
Sentinel LM
Programmer’s Reference

Manual

Copyright © 2004, Rainbow Technologies, Inc.
All rights reserved.

All attempts have been made to make the information in this document complete and accurate. Rainbow Technologies, Inc. is
not responsible for any direct or indirect damages or loss of business resulting from inaccuracies or omissions. The
specifications contained in this document are subject to change without notice.

Sentinel LM is a trademark of Rainbow Technologies, Inc. Microsoft Windows, Microsoft Windows NT, Windows 95, Win-
dows 98, Windows ME, Windows 2000, Windows 2003 and Windows XP are either trademarks or registered trademarks of
Microsoft Corporation in the United States and other countries. All other product names referenced herein are trademarks or
registered trademarks of their respective manufacturers.

CONFIDENTIAL INFORMATION

The Sentinel LM protection system is designed to protect your applications from unauthorized use. The less information that
unauthorized people have regarding your security system, the greater your protection. It is in your best interest to protect the
information herein from access by unauthorized individuals.

Part Number 007-0069-001, Revision A

Software versions 7.3.0 and later

Rainbow Technologies Sales Offices

Revision Action/Change Date

A Initial Release January 2004

 United States: http://www.rainbow.com, Tel: +1 949 450 7300 / Toll Free: +1 800 852 8569

Australia
Tel: +61 3 9882 8322
http://www.rainbowaustralia.com.au

Germany
Tel: +49 89 32 17 98 0
http://www.de.rainbow.com

Korea
Tel: +82 31 705 8212
http://www.rainbow.com/korea

Brazil
Tel: +55 11 6121 6455
http://www.rainbow.com/brasil

Hong Kong
Tel: +852 3157 7111
http://www.rainbow.com

Mexico
Tel: +52 55 5575 1441
http://www.rainbow.com/latinamerica

China
Tel: +86 10 8851 9191
http://www.isecurity.com.cn

India
Tel: +91 11 26917538
http://www.rainbowindia.co.in

Taiwan
Tel: +886 2 6630 9388
http://www.rainbow.com/taiwan

France
Tel: +33 1 41 43 29 00
http://www.fr.rainbow.com

Japan
Tel: +81 3 5719 2731
http://www.rainbowtech.co.jp

UK
Tel: +44 (0) 1932 579200
http://www.uk.rainbow.com
ii Sentinel LM Programmer’s Reference Manual

International Quality Standard Certification

Rainbow Technologies, Inc. Irvine, CA facility has been issued the ISO 9001 Certification,
the globally recognized standard for quality, by Det Norske Veritas as of March 2002. Certif-
icate Number CERT-02982-2000-AQ-HOU-RABR2.

European Community Directive Conformance Statement

This product is in conformity with the protection requirements of EC
Council Directive 89/336/EEC. Conformity is declared to the follow-
ing applicable standards for electro-magnetic compatibility immunity
and susceptibility; CISPR22 and IEC801. This product satisfies the
CLASS B limits of EN 55022.
Sentinel LM Programmer’s Reference Manual iii

iv Sentinel LM Programmer’s Reference Manual

Contents

Preface ... xvii

The Sentinel LM Manuals.. xviii
Who Should Read This Manual? ... xx

Conventions Used in This Manual... xxi
How to Get the Most from This Manual ... xxii
Getting Help... xxiv

Help Files.. xxiv
Online Documentation... xxiv
Contacting Rainbow Technologies Technical Support.. xxv

Export Considerations .. xxvii
We Welcome Your Comments .. xxviii

Chapter 1 – Introduction .. 1

Using the Sentinel LM Application Library ..1
Licensing on Stand-alone and Network Computers...3
Client API Example...3

Example ..4
Language Interfaces Supported..5
Special Use of Win32 for Generating Tools ..5
Debugging Your Client Application ...5
Disabling Licensing ..6
Sentinel LM Programmer’s Reference Manual v

Contents
Chapter 2 – Protecting Your Application with the
Application Library ... 7

Stand-alone Application Protection ...8
Network Application Protection ..8

Adding APIs to Your Source Code ...8
Application Identification..9
Automatic License Server Detection.. 10
Special Licensing Cases .. 12

Integrated Application Protection... 12
Dynamic Switching Between Stand-alone and Network Licensing................................ 13

Examples of Dynamic Switching... 14
Linking with the Correct Library... 14

Windows Static Linked Libraries .. 14
Windows Dynamic Linked Libraries and Import Libraries ... 16
UNIX Libraries ... 16

Testing and Debugging Your Application... 17
Disabling Licensing.. 17
Library Tracing ... 17

Sample Programs .. 18
Sample Program Summary.. 18
Customization Samples.. 19

Notes on Security .. 19
Protecting Against Time Tampering ... 20

Chapter 3 – Sentinel LM Client API .. 21

Basic Client Licensing Functions ... 24
Quick Client Licensing Functions ... 24

VLSlicense ... 24
VLSdisableLicense ... 28

Standard Client Licensing Functions .. 29
VLSinitialize .. 29
LSRequest.. 31
LSUpdate ... 35
LSRelease .. 39
VLScleanup ... 41
vi Sentinel LM Programmer’s Reference Manual

Contents
Advanced Client Licensing Functions...41
VLSrequestExt..42
VLSrequestExt2..45
VLSreleaseExt...45
VLSbatchUpdate ..47
Challenge-response Mechanism ..50

Client Configuration Functions ..52
VLSsetContactServer ...53
VLSgetContactServer ...56
VLSsetServerPort ...57
VLSgetServerPort...58
VLSinitMachineID..58
VLSgetMachineID ..60
VLSmachineIDtoLockCode ..61
VLSgetServerNameFromHandle..62
VLSinitServerList ...63
VLSgetServerList ..64
VLSinitServerInfo...65
VLSsetHostIdFunc..65
VLSsetBroadcastInterval..66
VLSgetBroadcastInterval ...67
VLSsetTimeoutInterval ..67
VLSgetTimeoutInterval ...68
VLSsetHoldTime...69
VLSsetSharedId/ VLSsetTeamId ..70
VLSsetSharedIdValue/ VLSsetTeamIdValue..72

Local vs. Remote Renewal of License Tokens...74
VLSdisableLocalRenewal ...75
VLSenableLocalRenewal..76
VLSisLocalRenewalDisabled ..76
VLSgetRenewalStatus..77
VLSsetRemoteRenewalTime..80
VLSdisableAutoTimer ..81

Client Query Functions...82
VLSgetClientInfo ..85
VLSgetHandleInfo..88
Sentinel LM Programmer’s Reference Manual vii

Contents
VLSgetLicInUseFromHandle... 89
Feature Query Functions... 90

VLSgetFeatureInfo .. 96
VLSgetVersions ... 98
VLSgetFeatureFromHandle .. 100
VLSgetVersionFromHandle .. 101
VLSgetTimeDriftFromHandle ... 102
VLSgetFeatureTimeLeftFromHandle .. 103
VLSgetKeyTimeLeftFromHandle .. 105

Client Utility Functions.. 106
VLSdiscover... 107
VLSaddFeature.. 110
VLSaddFeatureToFile.. 112
VLSdeleteFeature .. 114
VLSgetLibInfo.. 116
VLSshutDown ... 117
VLSwhere.. 119

Trial License Related Functions... 120
VLSgetTrialPeriodLeft ... 121

Getting License Server Information... 122
VLSservInfo Struct.. 123
Retrieving Information About Time Tampering -VLStimeTamperInfo Struct 124
Retrieving Information About a License Server (VLSgetServInfo) 125

VLSservInfo Data Structure .. 126
Error Handling .. 127

VLSerrorHandle .. 128
LSGetMessage ... 129
VLSsetErrorHandler .. 130
VLSsetUserErrorFile .. 131

Tracing Sentinel LM Operation ... 132

Chapter 4 – License Code Generation API 133

License Code Generation Functions .. 134
CodeT Struct.. 138
Basic Functions ... 143

VLScgInitialize.. 143
viii Sentinel LM Programmer’s Reference Manual

Contents
VLScgCleanup... 144
VLScgReset... 145

Functions Which Retrieve or Print Errors... 145
VLScgGetNumErrors .. 146
VLScgGetErrorLength... 146
VLScgGetErrorMessage .. 147
VLScgPrintError... 148

Functions for Setting the Fields in CodeT Struct ... 149
VLScgSetCodeLength... 153
VLScgAllowFeatureName ... 154
VLScgSetFeatureName.. 155
VLScgAllowFeatureVersion... 156
VLScgSetFeatureVersion ... 156
VLScgAllowLicenseType .. 157
VLScgSetLicenseType .. 157
VLScgAllowTrialLicFeature... 158
VLScgSetTrialDaysCount .. 159
VLScgAllowAdditive.. 159
VLScgSetAdditive.. 160
VLScgAllowKeyLifetime.. 161
VLScgSetKeyLifetime .. 161
VLScgAllowStandAloneFlag .. 162
VLScgAllowNetworkFlag .. 163
VLScgSetStandAloneFlag .. 163
VLScgAllowLogEncryptLevel... 164
VLScgSetLogEncryptLevel ... 164
VLScgAllowSharedLic/ VLSAllowTeamCriteria.. 165
VLScgSetSharedLicType/ VLScgSetTeamCriteria .. 166
VLScgAllowShareLimit/ VLScgAllowTeamLimit .. 168
VLScgSetShareLimit/VLScgSetTeamLimit ... 169
VLScgAllowCommuterLicense ... 170
VLScgSetCommuterLicense ... 170
VLScgAllowNumKeys... 171
VLScgSetNumKeys ... 172
VLScgAllowLockModeQuery ... 173
VLScgSetClientServerLockMode .. 174
Sentinel LM Programmer’s Reference Manual ix

Contents
VLScgAllowRedundantFlag ... 175
VLScgSetRedundantFlag ... 175
VLScgAllowMajorityRuleFlag... 176
VLScgSetMajorityRuleFlag ... 176
VLScgAllowMultipleServerInfo.. 178
VLScgSetNumServers ... 178
VLScgAllowServerLockInfo.. 179
VLScgSetServerLockInfo1.. 179
VLScgSetServerLockMechanism1 .. 181
VLScgSetServerLockMechanism2 .. 182
VLScgSetServerLockInfo2.. 183
VLScgAllowLockMechanism.. 184
VLScgSetClientLockMechanism... 184
VLScgAllowClientLockInfo .. 185
VLScgSetClientLockInfo .. 186
VLScgSetNumClients .. 187
VLScgAllowClockTamperFlag.. 188
VLScgSetClockTamperFlag .. 188
VLScgAllowOutLicType... 190
VLScgSetOutLicType ... 190
VLScgSetLicType... 191
VLScgAllowHeldLic... 192
VLScgSetHoldingCrit .. 192
VLScgAllowCodegenVersion .. 194
VLScgSetCodegenVersion .. 194
VLScgAllowCapacityLic .. 195
VLScgSetCapacityFlag .. 196
VLScgAllowCapacity... 197
VLScgSetCapacityUnits... 198
VLScgSetCapacity ... 199
VLScgAllowMultiKey ... 200
VLScgSetKeyType ... 200
VLScgAllowSecrets ... 202
VLScgSetSecrets.. 202
VLScgSetNumSecrets .. 203
VLScgAllowVendorInfo ... 204
x Sentinel LM Programmer’s Reference Manual

Contents
VLScgSetVendorInfo ... 204
VLScgAllowKeysPerNode.. 205
VLScgSetKeysPerNode.. 206
VLScgAllowSiteLic.. 207
VLScgSetSiteLicInfo .. 207
VLScgSetNumSubnets... 208
VLScgAllowNumFeatures ... 209
VLScgSetNumFeatures ... 210
VLScgAllowSoftLimit.. 211
VLScgSetSoftLimit .. 211
VLScgAllowKeyLifeUnits .. 212
VLScgSetKeyLifetimeUnits.. 213
VLScgAllowKeyHoldUnits .. 214
VLScgSetKeyHoldtimeUnits .. 214
VLScgAllowKeyHoldtime .. 215
VLScgSetKeyHoldtime .. 216
VLScgAllowLicBirth ... 217
VLScgSetLicBirthMonth ... 217
VLScgSetLicBirthDay ... 218
VLScgSetLicBirthYear .. 219
VLScgAllowLicExpiration ... 220
VLScgSetLicExpirationMonth ... 221
VLScgSetLicExpirationDay ... 222
VLScgSetLicExpirationYear .. 223
VLScgSetNumericType .. 224
VLScgSetLoadSWLicFile ... 225

License Generation Function .. 225
VLScgGenerateLicense... 225

License Decode Function ... 227
VLScgDecodeLicense.. 227

License Meter Related Functions... 229
VLScgGetLicenseMeterUnits ... 229
VLScgGetTrialLicenseMeterUnits .. 230
Sentinel LM Programmer’s Reference Manual xi

Contents
Chapter 5 – Redundancy API .. 233

Redundancy Functions and API ... 234
VLSaddFeature ... 236
VLSaddFeatureExt.. 238
VLSaddFeatureToFile .. 239
VLSaddServerToPool ... 241
VLSchangeDistbCrit .. 242
VLSdelServerFromPool ... 243
VLSdiscoverExt... 246
VLSgetDistbCrit.. 249
VLSgetDistbCritToFile .. 251
VLSgetFeatureInfoToFile... 253
VLSgetHostName.. 255
VLSgetLeaderServerName ... 256
VLSgetHostAddress... 258
VLSgetLicSharingServerList .. 259
VLSgetPoolServerList.. 261
VLSsetBorrowingStatus .. 262
VLSsetServerLogState ... 264

Chapter 6 – License Queuing API ... 267

License Queuing Example Code... 267
License Queuing Functions ... 270

VLSqueuePreference Struct.. 271
VLSserverInfo Struct... 272
VLSgetQueuedClientInfo Struct.. 272
VLSqueuedRequest and VLSqueuedRequestExt... 274
VLSgetQueuedClientInfo.. 280
VLSremoveQueuedClient ... 282
VLSremoveQueue.. 284
VLSgetHandleStatus ... 285
VLSupdateQueuedClient .. 286
VLSgetQueuedLicense.. 288
VLSinitQueuePreference .. 291
xii Sentinel LM Programmer’s Reference Manual

Contents
Chapter 7 – Commuter License API.. 293

Commuter License Related Functions... 293
 VLSCommuterInfo ... 294
VLSgetCommuterInfo.. 296
VLSgetAndInstallCommuterCode... 297
VLSuninstallAndReturnCommuterCode... 298
Get Commuter Locking Code from Remote Computer (VLSgetMachineIDString) 299

lock_selector Values.. 300
Checking Out a Remote Authorization (VLSgetCommuterCode) 301
Installing a Remote Commuter Authorization (VLSinstallCommuterCode) 303

Chapter 8 – Capacity License API ... 305

Capacity License Related Functions .. 305
VLSrequestExt2.. 306
VLSgetFeatureInfoExt... 313
VLSgetCapacityList... 315
VLSgetClientInfoExt ... 317
VLSdeleteFeatureExt... 319
VLSgetCapacityFromHandle ... 321
VLSsetTeamId... 321
VLSsetTeamIdValue .. 321

Chapter 9 – Upgrade License API ... 323

Upgrade License Code Generator API.. 323
ucodeT Struct .. 325
VLSucgInitialize.. 327
VLSucgCleanup... 327
VLSucgReset... 328
VLSucgGetNumErrors .. 329
VLSucgGetErrorLength ... 330
VLSucgGetErrorMessage .. 331
VLSucgPrintError... 332
VLSucgAllowBaseFeatureName .. 333
VLSucgSetBaseFeatureName... 334
VLSucgAllowBaseFeatureVersion.. 335
Sentinel LM Programmer’s Reference Manual xiii

Contents
VLSucgSetBaseFeatureVersion.. 336
VLSucgAllowUpgradeCode .. 337
VLSucgSetUpgradeCode .. 338
VLSucgAllowUpgradeFlag... 339
VLSucgSetUpgradeFlag ... 340
VLSucgAllowUpgradeVersion.. 341
VLSucgSetUpgradeVersion .. 342
VLSucgAllowUpgradeCapacity .. 343
VLSucgSetUpgradeCapacityUnits .. 344
VLSucgSetUpgradeCapacity... 346
VLSucgGenerateLicense... 347
VLSucgGetLicenseMeterUnits ... 349
VLSgenerateUpgradeLockCode... 350

Upgrade License Decode API ... 351
ulcCode Struct... 352
VLSdecodeUpgradelockCode... 353
VLSucgDecodeLicense.. 354

Chapter 10 – Usage Log Functions... 357

VLSchangeUsageLogFileName... 357
VLSgetUsageLogFileName .. 358

Chapter 11 – Utility Functions.. 359

VLSscheduleEvent... 359
VLSdisableEvents.. 360
VLSeventSleep... 361

Appendix A – Sample Applications ... 363

Appendix B – Customization Features .. 365

Initializing the Server .. 367
VLSserverVendorInitialize ... 367
VLSeventAddHook .. 367

Protecting Against Time Clock Changes ... 370
VLSconfigureTimeTamper.. 371
xiv Sentinel LM Programmer’s Reference Manual

Contents
VLSisClockSetBack ... 373
Encrypting License Codes .. 373

VLSencryptLicense.. 374
VLSdecryptLicense .. 376

Encrypting Messages ... 378
VLSencryptMsg .. 378
VLSdecryptMsg .. 380

Changing the Default Port Number .. 381
VLSchangePortNumber... 381

Customizing the Host ID.. 382
Creating the Custom Host ID Function... 383
Registering the Custom Host ID Function on the Server .. 384
Registering the Custom Host ID Function on the Client... 384
Building the Server.. 385
Creating an Updated Client ID Generator.. 385
Using a Customized Host ID .. 385

Customizing Upgrade Licenses .. 386
VLSencryptUpgradeLicense ... 386
VLSdecryptUpgradeLicense.. 387

Setting License Server Information ... 387
Setting Vendor Specific Information in a License Server (VLSsetServerInfo) 387

Customizing Stand-alone License File Names (VLSsetFileName).............................. 388
Using a Custom Locking Code ... 389

Step 1 - Rebuilding License Server .. 390
Compiler Required .. 390
Files Required.. 390
Required Changes to Server Source Code ... 391
Steps to Rebuilding the License Server.. 391

Step 2 - Rebuilding echoid.exe .. 392
Compiler Required .. 392
Files Required for echoid.exe... 392
Required Changes to echoid.exe ... 393
Steps to Rebuilding echoid.exe.. 393

Step 3 - Modifying Client Application ... 393
Overall Process of Using a Rebuilt License Server and Rebuilt echoid.exe.................... 394

Adding Additional Security to Licenses Generated by WlscGen 394
Sentinel LM Programmer’s Reference Manual xv

Contents
Appendix C – Sentinel LM Error and Result Codes..................... 397

Appendix D – Error and Result Codes for
License Generation Functions .. 415

Appendix E – Error and Result Codes for
Upgrade License Functions ... 423

Appendix F – File Formats .. 429

License Code File Format ... 429
Configuration File Format ... 430
Log File Format.. 434

Index .. 437
xvi Sentinel LM Programmer’s Reference Manual

Preface

Thank you for choosing the Sentinel LMTM license management product to
license your software. Read on for information on using the Sentinel LM
Application Library to add protection to your applications.
Sentinel LM Programmer’s Reference Manual xvii

Preface
The Sentinel LM Manuals

The Sentinel LM product includes several manuals, all designed to work in
conjunction with each other.

Manual What’s in it? Who should read it?

Sentinel LM
Developer’s
Guide

All the steps necessary to
protect, package, and
ship a stand-alone or
network application
protected with Sentinel
LM-Shell or the Sentinel
LM Application Library.

Developers using Sentinel LM-
Shell or the API option who are
responsible for the overall
process of protecting and
shipping an application for a
stand-alone or network
computer.
xviii Sentinel LM Programmer’s Reference Manual

Preface
Note: For exact location of Sentinel LM documentation we suggest you to refer
to ReadMeFirst.pdf.

Sentinel LM
Programmer’s
Reference
Manual

Description of the
Sentinel LM Application
Library.

Developers who are using the
Sentinel LM Application Library
to protect their applications.
This manual assumes you are
familiar with the C
programming language. Other
language interfaces are also
available.

Sentinel LM
System
Administrator’s
Online Guide

Information for the end
user of your protected
application, including
use of administrator
commands and
configuring and using a
license server.

End users of your protected
application who are responsible
for administering the
application and end user license
management and who are
familiar with system
administration tasks.

Sentinel LM
Start
Here Guide

Information to get the
developer up and
running with Sentinel
LM as quickly as possible.
It contains installation
instructions and a quick
tour of Sentinel LM-
Shell.

Any developer using Sentinel
LM.

Sentinel LM
Release Notes

Information on the
features added to the
current release. Also
contains late-breaking
information that was
not available when the
manuals were
completed.

Any developer using Sentinel
LM.

Manual What’s in it? Who should read it?
Sentinel LM Programmer’s Reference Manual xix

Preface
Who Should Read This Manual?

The Sentinel LM Programmer’s Reference Manual provides detailed informa-
tion about the APIs that constitute the Sentinel LM Application Library. It
has been especially designed for developers who need to write their own
code using the Sentinel LM Application Library to protect their application.

To be able to understand the Sentinel LM Programmer’s Reference Manual,
you should be familiar with the C programming language, although other
language interfaces are available.
xx Sentinel LM Programmer’s Reference Manual

Preface
Conventions Used in This Manual

Please note the following conventions used in this manual:

Convention Meaning

Select Use the arrow keys or mouse to select an item on a
menu, a field in a window or an item in a list.

Click Press the primary mouse button once. The primary
mouse button is typically the left button, but may be
reassigned to the right button.

Courier Denotes syntax, prompts and code examples. Bold
Courier type represents characters that you type; for
example: logon.

Bold Lettering Words in boldface type represent keystrokes, menu
items, window names or fields.

Italic Lettering Words in italic type represent file names and directory
names.

This warning icon flags any potential pitfalls that we
think you may need to be careful of.

Note:
Used for highlighting notes related to a specific section.

Tip:
Denotes tips that should be remembered while trying to
achieve a specific result.
Sentinel LM Programmer’s Reference Manual xxi

Preface
How to Get the Most from This Manual

This manual provides detailed information about the APIs that constitute
the Sentinel LM Application Library. The APIs are enlisted in the chapters
described below:

Chapter/Appendix Description

Chapter 1 – Introduction Shows how Sentinel LM is put together.

Chapter 2 – Protecting Your
Application with the Application
Library

Provides instructions and information on
client library functions and compiling
applications.

Chapter 3 – Sentinel LM Client
API

Provides a complete reference of all client
functions.

Chapter 4 – License Code
Generation API

Allows you to write a program to
generate license codes.

Chapter 5 – Redundancy API Summarizes the redundancy functions.

Chapter 6 – License Queuing API Explains the license queuing functions.

Chapter 7 – Commuter License
API

Summarizes the commuter license related
functions.

Chapter 8 – Capacity License API Summarizes the capacity license related
functions

Chapter 9 – Upgrade License API Explains the upgrade licensing functions.

Chapter 10 – Usage Log
Functions

Explains the usage log functions.

Chapter 11 – Utility Functions Summarizes functions for the UNIX
platform.

Appendix A – Sample
Applications

Lists source code for the sample programs
and utilities.

Appendix B – Customization
Features

Lists the features that can be customized.

Appendix C – Sentinel LM Error
and Result Codes

Lists client function return codes and their
description.
xxii Sentinel LM Programmer’s Reference Manual

Preface
Appendix D – Error and Result
Codes for License Generation
Functions

Lists license generation function return
codes.

Appendix E – Error and Result
Codes for Upgrade License
Functions

Lists upgrade license generation function
return codes.

Appendix F – File Formats Summarizes all the file formats like
license code file format, configuration file
format and log file format.

Chapter/Appendix Description
Sentinel LM Programmer’s Reference Manual xxiii

Preface
Getting Help

If you have questions that were not answered in this manual, please see the
following sources for additional help.

Help Files

Several online help files are available for your use. From the Start menu,
select Rainbow Technologies and then select the help file you are
interested in.

Online Documentation

This Sentinel LM Programmer’s Reference Manual you are currently reading is
also available in portable document format (PDF) on the Sentinel LM CD in
the \Manuals directory.

You need Adobe Acrobat Reader 4.0 or later to view and print PDF files. We
recommend installing Acrobat Reader 5.0 or higher for better results. This
version of Acrobat can be downloaded from http://www.adobe.com.

For the Windows versions of Sentinel LM, you may install the Reader from
the Sentinel LM release by navigating to the \Acrobat directory on the Senti-
nel LM CD and starting the AdbeRdr60_enu_full.exe file. Running that file
will install the Acrobat Reader on your hard disk.

For UNIX computers, you can obtain the Acrobat Reader from the Adobe
web page, http://www.adobe.com. Follow the instructions on that Web page
to choose and install the correct Reader for your particular UNIX platform.
We also include the Windows version of the Reader on the UNIX release.

Once you have installed Acrobat Reader, you are ready to access the
documentation PDF files, which are included on the Sentinel LM CD.
xxiv Sentinel LM Programmer’s Reference Manual

http://www.adobe.com

Preface
Contacting Rainbow Technologies Technical Support

Rainbow Technologies is committed to supporting the Sentinel LM. If you
have questions, need additional assistance, or encounter a problem, please
contact Technical Support:

Rainbow Technologies Technical Support Contact Information

Rainbow Technologies Customer Connection Center (C3)

http://c3.rainbow.com

Americas

Internet http://www.rainbow.com/support

E-mail techsupport@rainbow.com

United States

Telephone (800) 959-9954

Fax (949) 450-7450

Europe

E-mail EUTechSupport@rainbow.com

France

Telephone 0825 341000

Fax 44 (0) 1932 570743

Germany

Telephone 01803 RAINBOW (7246269)

Fax 089 32179850

United Kingdom

Telephone 0870 7529200

Fax 44 (0) 1932 570743
Sentinel LM Programmer’s Reference Manual xxv

http://c3.rainbow.com
http://www.rainbow.com/support

Preface
Tip: Check the Rainbow Technologies Web site (www.rainbow.com) for the most
up-to-date information about Sentinel LM, including FAQs and technical
notes.

Pacific Rim

E-mail techsupportpacrim@rainbow.com

Australia and New Zealand

Telephone (61) 3 9882 8322

Fax (61) 3 9820 8711

China

Telephone (86) 10 8851 9191

Fax (86) 10 6872 7342

India

Telephone (91) 11 2691 7538

Fax (91) 11 2633 1555

Taiwan and Southeast Asia

Telephone (886) 2 6630 9388

Fax (886) 2 6630 6858

Rainbow Technologies Technical Support Contact Information (Continued)
xxvi Sentinel LM Programmer’s Reference Manual

http://www.rainbow.com

Preface
Export Considerations

Rainbow Technologies offers products that are based on encryption technol-
ogy. The Bureau of Industry and Security (BIS) in the U.S. Department of
Commerce administers the export controls on Rainbow’s commercial
encryption products.

Rules governing exports of encryption can be found in the Export Adminis-
tration Regulations (EAR), 15 CFR Parts 730-774, which implements the
Export Administration Act (“EAA” 50 U.S.C. App. 2401 et seq.).

Important Note: BIS requires that each entity exporting products be famil-
iar with and comply with their obligations described in the Export
Administration Regulations. Please note that the regulations are subject to
change. We recommend that you obtain your own legal advice when
attempting to export any product that uses encryption. In addition, some
countries may restrict certain levels of encryption imported into their coun-
try. We recommend consulting legal counsel in the appropriate country or
the applicable governmental agencies in the particular country.
Sentinel LM Programmer’s Reference Manual xxvii

Preface
We Welcome Your Comments

To help us improve future versions of Sentinel LM documentation, we want
to know about any corrections, clarifications or further information you
would find useful. When you contact us, please include the following
information:

■ The title and version of the guide you are referring to

■ The version of the Sentinel LM software you are using

■ Your name, company name, job title, phone number and e-mail
address

Send us e-mail at:

techpubs@rainbow.com

Or, you can write us at:

Rainbow Technologies, Inc.
50 Technology Drive
Irvine, CA 92618

Attn: Technical Publications Department

Thank you for your feedback. Keep in mind that these e-mail and mail
addresses are only for documentation feedback. If you have a technical
question, please contact Rainbow Technical Support (see “Contacting Rain-
bow Technologies Technical Support” on page xxv).
xxviii Sentinel LM Programmer’s Reference Manual

Chapter 1
Introduction

Sentinel LM is a license toolkit used by developers to add network and/or
stand-alone licensing to their applications. The main components of the
license management system are a protected application, a license file con-
taining one or more license codes that authorize the use of the protected
application, and a license server to receive and act on authorization
requests. Access to the license server is made possible by an Application Pro-
gramming Interface (API). API functions are implemented in the Sentinel
LM Client Library which is linked with the application. For stand-alone
applications, the license server is replaced with code that perform equivalent
functions but without network access. In either case, an application pro-
gram uses the same API set. Thus, the same version of an application can be
delivered to end users that will run in either network or stand-alone mode.

Using the Sentinel LM Application Library

The Sentinel LM Client Library is used to integrate Sentinel LM API calls to
your client application. There are different integration styles that offer vary-
ing degrees of functionality.

■ The Quick-API is for use in applications that require only one license
for each instance of the program. It is the simplest of the three API
sets, and only requires the addition of two function calls. The first
initializes contact with the license server and automatically updates
the license code. This call is made during program initialization. The
Sentinel LM Programmer’s Reference Manual 1

Chapter 1 – Introduction
other is made at the end of the program to disable licensing and
return the license code.

■ The Standard-API offers a full spectrum of licensing models
including the licensing of multiple features in a single application. It
requires adding only four function calls. The program begins by
initializing the client library and requesting a license code. At the end
of the program, calls are made to release the license code and clean up
the client library. This method provides greater control and flexibility
to the developer.

■ The Advanced-API provides all the capabilities of the Standard-API
plus additional server-side customization features. The Microsoft
LSAPI defines a family of functions together with their parameters
and return codes for use with applications running with a license
server. A subset of LSAPI is included in the Advanced-API set, and is
compliant with that standard. The additional functions that augment
the Standard-API to form the Advanced-API can be grouped into one
of several categories as follows:

❑ Client Configuration functions, which allow an application to
retrieve or change default values for such settings as port number,
server name, broadcast interval, timeout interval, etc.

❑ Client Query functions, which obtain a snapshot of the current
status of the license server and the features it licenses.

❑ Feature Query functions, which retrieve feature licensing
information from the license manager such as name and version.

❑ Client Utility functions, which provide client library capabilities
such as the hostname of the machine running Sentinel LM
protected application, the names of the computers running the
license server, and other facilities useful to certain specialized
applications.

❑ Error handling functions, which make possible turning error
handling on and off, registering custom error handlers, and
printing error messages.
2 Sentinel LM Programmer’s Reference Manual

Client API Example
Licensing on Stand-alone and Network Computers

Typically, your customer installs your application on one or more computers
or on a file server that is connected to the network. They designate one com-
puter on which the license server will run (the computer need not be the file
or application server). To obtain a license authorization, the client applica-
tions communicate with the license server over the network as soon as they
start up. Only when a valid license code is issued does the application actu-
ally run. Applications do not have to be network-aware. Sentinel LM
handles all network communication with the license server.

Stand-alone licensing is usually used with non-networked PCs running
Windows. You can ship a single copy of your software to all your customers
even if some of them have networking and some do not. By simply providing
a different type of license code, you activate your software to run in stand-
alone mode or in network mode.

Client API Example

This section describes and gives an example of how to integrate the Sentinel
LM Client Library functions into your application software. The example is
independent of the platform on which it is run; i.e., it will execute either
under Windows or UNIX. The purpose of the example is to illustrate the
straightforward manner in which an application can be protected using
Sentinel LM.

The first call is VLSinitialize, this API initializes the client library. VLSinitial-
ize is called during program initialization. It has no parameters and will
return a status of LS_SUCCESS upon successful completion. Once that has
been done, you may proceed with your application.

The next function to call is LSRequest which takes several parameters.
These include FeatureName which identifies your product and Version which
specifies the version number of that product. The feature name and version
are also contained in the license code, and must match before authorization
to run the program can be given.
Sentinel LM Programmer’s Reference Manual 3

Chapter 1 – Introduction
If you intend to license your application without separate feature sets, only
one call to LSRequest is needed. However, if you are planning to charge for
different features, each feature will require a separate license, and one LSRe-
quest call will be required for each feature. The features will need different
names for identification, and a separate version number may be associated
with each one.

Note: The license will be updated automatically for you at 80% of the lifetime of
the license. A call to LSUpdate is not necessary.

Once the application knows that the user has finished using a particular fea-
ture, it calls LSRelease to return the license authorization to the license pool
so other programs can use it. Finally, after all licenses have been released
and the program is ready to terminate, a call is made to VLScleanup to
inform the library that any resources that it has allocated may be released.

Example

{
LS_HANDLE handle;
/* First Call, Initialize the client library */
if (VLSinitialize())
 {
 printf("Unable to initialize license server library.\n");
 VLScleanup();
 };
/* Second Call: Request a license */
if (LS_SUCCESS != LSRequest (LS_ANY, PUBLISHER_NAME,
FEATURE_NAME, VERSION, NULL, NULL, NULL , &handle))
 {
 printf("Unable to obtain a license.\n");
 VLScleanup();
 };
printf("Successfully Obtained a license.\n");
/* Third Call: Return the license */
(void) LSRelease(handle, LS_DEFAULT_UNITS, NULL);
/* Last Call: Clean Up */
VLScleanup();
}

4 Sentinel LM Programmer’s Reference Manual

Debugging Your Client Application
Language Interfaces Supported

Different language interfaces are supported by Sentinel LM to allow you to
incorporate Sentinel LM Application Library calls in applications coded in
different programming languages. Among the language interfaces sup-
ported are Microsoft Visual C/C++, Microsoft Visual Basic, Java,
COMObjects, PowerBuilder, Borland C, and Delphi. Check the \Interface
directory in the Sentinel LM directory for the latest language interfaces.

Other interfaces are available, and will continue to become available over
time. Contact your Rainbow representative for information on new inter-
faces and specific versions supported. If your application does not use one of
the supported interfaces, see the Sentinel LM Developer’s Guide for informa-
tion on using the Sentinel LM-Shell, which encloses your application in a
protective shell without modifying your application.

Special Use of Win32 for Generating Tools

Persons using the license generating capability of Sentinel LM are advised
that the program to generate licenses is protected by one of Rainbow's hard-
ware keys. Therefore, the program must be run under Windows, even when
generating licenses to be used under UNIX. More generally, all users of the
Sentinel LM system are encouraged to install the Windows version of Senti-
nel LM first in order to familiarize themselves with all of its features. This is
recommended even if its eventual intended use is for UNIX environments.

Debugging Your Client Application

The Sentinel LM Client Library has been written to intercept and log four dif-
ferent levels of events. The values for the different events in increasing order
are:

VLS_TRACE_KEYS
VLS_TRACE_FUNCTIONS
VLS_TRACE_ERRORS
VLS_TRACE_ALL
Sentinel LM Programmer’s Reference Manual 5

Chapter 1 – Introduction
Any value implicitly includes logging not only its own event class, but the
event classes associated with all lower values as well. A fifth value,
VLS_NO_TRACE, is the default, and turns off all logging activity.

A developer can activate one of these levels by inserting a call to
VLSsetTraceLevel somewhere in the client code. (See “Tracing Sentinel LM
Operation” on page 132.) The trace level will not be set until the function is
called, making it possible to limit logging to certain portions of the client
code only. A developer may choose to place more than one such call in the
client code, and use different trace levels with each call in order to generate
different logging profiles based upon what code is being executed.

To activate the logging feature, the Sentinel LM license server must be
started using the appropriate option(s). See the online System
Administrator's Guide for details."

Disabling Licensing

The macro NO_LICENSE in the lserv.h file can be set to completely disable
licensing for debugging. This replaces all Sentinel LM function calls with
void statements. Don’t forget to re-enable licensing before preparing your
application for shipment.
6 Sentinel LM Programmer’s Reference Manual

Chapter 2
Protecting Your Application
with the Application Library

This chapter contains instructions and detailed information on:

■ Client library functions

■ Compiling your application

Using the Sentinel LM Application Library to embed protection calls in your
application source code provides the maximum amount of control, and
allows you the most flexibility in using licensing models.

This chapter contains information on using the Sentinel LM Application
Library to protect your application in the following ways:

■ Stand-alone

■ Network

■ Integrated

For a full discussion of the Sentinel LM Application Library calls, refer to
other chapters in this book.
Sentinel LM Programmer’s Reference Manual 7

Chapter 2 – Protecting Your Application with the Application Library
Stand-alone Application Protection

When Sentinel LM protects your stand-alone application, it embeds within it
the license management function that checks for a valid license code before
the application will run. Very simply, if a valid license code exists, the
application will run; if Sentinel LM cannot find a valid license code, the
application will not run.

You may also restrict the application to run only on a specific computer by
locking the application to that computer.

For more information on stand-alone licensing and on using Sentinel LM-
Shell, refer to the Sentinel LM Developer's Guide.

Network Application Protection

To protect an application that is to be run on multiple computers Sentinel
LM moves the license management function outside of the protected appli-
cation itself and uses an external license server to verify that a valid license
code exists before granting authorization to run the application.

Note: The license server can run on any computer on the network, including a
computer on which the protected application is run.

The license server keeps track of all Sentinel LM licenses and handles
requests from network users who want to run your application, granting
authorization to the requesters to allow them to run the application, and
denying requests when all licenses are in use.

Adding APIs to Your Source Code

Once you determine which licensing model you are going to support, you
can start to implement the code. In most cases, API calls remain the same
for different licensing options. Licensing options are encoded in the license
code so your program can adapt to future changes. We will discuss using the
following calls:
8 Sentinel LM Programmer’s Reference Manual

Network Application Protection
■ VLSinitialize

■ LSRequest

■ VLSdiscover

■ LSUpdate

■ LSRelease

■ VLScleanup

Let’s first take a look at how to quickly implement a sample program.

The first call you want to make in your application during its initialization is
VLSinitialize.

It has no parameters and will return a LS_SUCCESS status upon success.
You should proceed with your application after this call.

The next function you want to call is LSRequest.

This API takes several parameters. PublisherName identifies your company.
FeatureName identifies your product and Version identifies the version num-
ber for that product. The feature name and version information must match
what you give the license code generator when you generate a license code
authorizing use of this application.

Application Identification

Each successful request returns a handle which identifies the dialog set up
between the licensed application and the license server. This handle should
be used in all dialog or connection library calls.

This architecture enables a licensed application to set up multiple connec-
tions with the license server and request multiple licenses. The license server
treats each request independently.

If you are going to license your application without separate feature sets,
you will only need to call LSRequest once. However, if you are planning to
license and charge based on features, you will need to call LSRequest once
for each feature. These features will need to have a different name for identi-
fication. Each feature can have a version associated with it.
Sentinel LM Programmer’s Reference Manual 9

Chapter 2 – Protecting Your Application with the Application Library
If you choose to implement license queuing, you may want to use the
VLSqueuedRequest call instead. Use the requestFlag parameter to control
normal and queued license requests. For details, see Chapter 6, “License
Queuing API,” on page 267.

Automatic License Server Detection

If you provide no information to Sentinel LM protected application on the
location of a license server, a Sentinel LM-licensed application uses a broad-
cast mechanism to determine the existence of an active Sentinel LM license
server on the local subnet, and automatically establishes a dialog with the
first license server with a license for the given feature and version.

You can prevent a network broadcast and instead direct the application to
specific license servers in the following ways:

■ If you set the LSFORCEHOST environment variable to a particular
license server, Sentinel LM initiates contact with that license server
only. LSFORCEHOST overrides the LSHOST environment variable or
the LSHOST/lshost file.

■ If no LSFORCEHOST environment variable is set, Sentinel LM looks for
an LSHOST environment variable or LSHOST (or lshost) file, which
contains a list of one or more license servers. Example: LSHOST =
server1:server2:server3 where serverX can be hostname, IP or IPX
address of the license server. If Sentinel LM cannot find an LSHOST
environment variable or LSHOST/lshost file, or if it cannot find the
license servers specified in that variable or file, Sentinel LM uses its
broadcast mechanism to find any license server on the local subnet
which contains the desired feature/version.

When there are multiple Sentinel LM license servers with different license
files, licensed applications may query the wrong license server for permis-
sion to run. If a licensed application contacts a license server that does not
have any free licenses, the application will not receive a license and other
non-redundant license servers that have available licenses for the feature/
version will not automatically be contacted. The Sentinel LM client library
will return an error, and/or the application will terminate.
10 Sentinel LM Programmer’s Reference Manual

Network Application Protection
This situation can be avoided by using the Sentinel LM client library call,
VLSdiscover, to locate all of the Sentinel LM license servers on the local sub-
net, and query each of them individually for a license. You will need to call
VLSsetContactServer to initiate contact with each license server. Another
option is to use the LSHOST environment variable or the LSHOST/lshost file.
Using VLSdiscover may be preferable in that it protects end users from hav-
ing to set environment variables or be concerned with additional files.

Although Sentinel LM uses the broadcast mechanism, network impact is
minimal. It is used only on the first LSRequest call and only on the local sub-
net. It is optimized to use minimal bandwidth.

If you are using the combined stand-alone and networked mode library
(dual mode), The LSRequest API will first try to look for a stand-alone
license. If a stand-alone license does not exist on the client machine, it will
perform a broadcast on the network for a license server. Your application
should check the return code and continue to execute if LSRequest returns
LS_SUCCESS. Once LSRequest is called, the client library will automatically
renew the license acquired before it expires. This frees the application from
worrying about renewing the license on a rigid time schedule. However, it is
recommended that you call LSUpdate periodically to make sure that the
license renewal is successful and the license server is still up and running.
LSUpdate is not required for stand-alone licensing but there are no side
effects from including it so your application works in both stand-alone and
networked mode.

Note: If you choose to call LSUpdate to manually renew the license, you must call
LSUpdate within the lifetime of the license. Be absolutely certain to call
VLSdisableLocalRenewal after VLSinitialize, but before LSRequest.

The licensing is done once these functions are called and your application
can proceed with its normal functionality.

After your application decides that a particular feature is no longer required
by the user, it can call LSRelease to release the license back to the license
pool so other users can use it.

When your application quits, you should call VLScleanup to let the client
library take care of releasing any resources it allocates.
Sentinel LM Programmer’s Reference Manual 11

Chapter 2 – Protecting Your Application with the Application Library
Special Licensing Cases

There might be cases where you want to take advantage of built-in support
for special licensing options. For example, a shared license allows more than
one application/component to share the same license. This is useful for
logically grouping similar features which you do not intend to charge the
user for separately. For more details, refer to VLSsetSharedId and
VLSsetSharedIdValue in Chapter 3, “Sentinel LM Client API,” on page 21.

Another example of special licensing is the held license. If your program is
short-lived, you can use VLSsetHoldTime to set the checkout time for a
license. This allows users to reclaim a license when running a short-lived,
frequently used application, such as a compiler.

You may want to manually update the license yourself. To do so, you need to
call:

■ VLSinitialize

■ VLSdisableLocalRenewal

■ LSRequest

■ LSUpdate (You will need to create your own timer to insure the
update occurs prior to the license lifetime expiring.)

■ LSRelease

■ VLScleanup

Integrated Application Protection

Sentinel LM provides an integrated library that allows an application to
switch between stand-alone and network licensing. The benefit of using the
Sentinel LM integrated library lies in the fact that the license type (stand-
alone/ network) can be decided when the application is run, not when the
application is compiled.
12 Sentinel LM Programmer’s Reference Manual

Integrated Application Protection
Dynamic Switching Between Stand-alone and Network
Licensing

One of the most important benefits Sentinel LM offers is dynamic switching
when an application is protected using the Sentinel LM integrated library
and when the LSFORCEHOST environment variable is not set to any value.
Dynamic switching occurs when an application is protected with the inte-
grated library and it is not defined at that time whether the application will
obtain a stand-alone license on the computer on which it is running (stand-
alone mode) or from a license server (network mode). At the time the appli-
cation is run, the decision is made based on the availability of a license. In an
effort to make dynamic switching more flexible and consistent, a change
has been made in the way the LSHOST environment variable is interpreted
by Sentinel LM.

The LSHOST environment variable is now interpreted as stating a preference
for where a license will be obtained:

■ If LSHOST on the client computer is not set to anything, the
application protected with the integrated library will search first for a
stand-alone license on that computer; if it is not found, the application
will start looking for network license servers for a network license.

■ If LSHOST is set to anything other than NO-NET, the application will
look first for a license server on the computers named by LSHOST; if it
cannot find a license server on the computers defined by LSHOST that
can grant the requested license, Sentinel LM will do a broadcast on the
network to look for a network license server that has the license. If the
appropriate license server is not found on the network, Sentinel LM
will start looking for a stand-alone license.

If LSHOST is set to NO-NET, Sentinel LM will first look for a stand-alone
license; if it cannot find one, it will start looking for a license on a network
license server.

Tip: You can use the LSFORCEHOST environment variable to force Sentinel LM to
look for a license on one specific computer. Or to force Sentinel LM to ONLY
look for a stand-alone license, set LSFORCEHOST to NO-NET.
Sentinel LM Programmer’s Reference Manual 13

Chapter 2 – Protecting Your Application with the Application Library
Examples of Dynamic Switching

■ If LSHOST is set to NO-NET followed by a list of computers containing
license servers:

LSHOST NO-NET:ACCTNG1:MIS2:ORION

If a stand-alone license is found, the application will use it. If a stand-
alone license is not found, Sentinel LM switches to searching the com-
puters on the network named in the LSHOST environment in the
order listed for a license server containing a network license that can
be granted.

■ If LSHOST is set to a single computer name, Sentinel LM starts looking
for a network license from a license server on that computer. If it
doesn’t find a license, it performs a broadcast on the network to look
for a network license server that has the license. If an appropriate
license server is not found on the network, Sentinel LM switches to
stand-alone mode and looks for a stand-alone license on the
computer on which the application is running.

Linking with the Correct Library

Both dynamic linked libraries and static linked libraries are available for 32-
bit Windows applications. We recommend using the combined stand-alone
and network (dual mode) library if possible. This allows your application to
request a license either on a stand-alone computer or from a remote license
server.

Windows Static Linked Libraries

In addition to using the correct static libraries, you must also link the follow-
ing libraries (which are included in your Windows development
environment) into your application: wsock32.lib, rptcrt4.lib, shell32.lib,
ole32.lib, oleaut32.lib, uuid.lib, odbc32.lib, odbccp32.lib, and netapi32.lib.
Please see the sample32.mak make file in the Sentinel LM
\demo\MsvcDev\Samples directory for details on how to link your application
with the Sentinel LM client library.
14 Sentinel LM Programmer’s Reference Manual

Linking with the Correct Library
Note: The libraries in the following tables are only available if you have pur-
chased the appropriate options (i.e., API option).

In the static libraries folder, you will find the following files:

Windows Static Libraries

Library Description

lsapiw32.lib Dual network and stand-alone client library for Windows
applications. This library allows you either to access the
stand-alone license locally or acquire a license from a remote
license server over the network.

lssrv32.lib This library is the same as lsapiw32.lib.

lsclws32.lib The network client library for Windows applications. This
library allows your application to acquire licenses via
network only.

lsnnet32.lib The stand-alone client library for Windows applications. This
library allows you to acquire stand-alone licenses on a local
computer only.
Sentinel LM Programmer’s Reference Manual 15

Chapter 2 – Protecting Your Application with the Application Library
Windows Dynamic Linked Libraries and Import Libraries

UNIX Libraries

You can choose one of three libraries to link with:

■ libls.a - The network licensing client library, not relevant for stand-
alone licensing.

■ libnonet.a - Library for stand-alone mode licensing. Does not have any
network awareness at all. Does not require a license server in order to
run.

■ liblssrv.a - Integrates the functionality of libls.a and libnonet.a. At run-
time, it switches to either libls.a behavior or libnonet.a behavior,
depending upon the environment variable, LSHOST. If LSHOST is set
to NO-NET or no-net, the linked application will go into stand-alone
mode, otherwise it will stay in network mode.

Windows Dynamic Libraries and Import Libraries

Library Description

lsapiw32.dll Dual network and stand-alone client library for 32-bit Windows
applications. This library allows you either to access the stand-
alone license locally or acquire a license from a remote license
server over the network.

lsapiw32.lib This library is the import library for lsapiw32.dll, (Microsoft
format).

lssrv32.dll This library is the same as lsapiw32.dll.

lsclws32.dll The network client library for 32-bit Windows applications. This
library allows your application to acquire licenses via network
only. If you copy this library to lsapiw32.dll, you may use the
lsapiw32.lib import library supplied with the installation.

lsnnet32.dll The stand-alone client library for 32-bit Windows applications.
This library allows you to acquire stand-alone licenses on a local
computer only. If you copy this library to lsapiw32.dll, you may
use the lsapiw32.lib import library supplied with the
installation.
16 Sentinel LM Programmer’s Reference Manual

Testing and Debugging Your Application
libls.a and libnonet.a will result in smaller executable but are more limited
and less flexible in functionality and behavior than liblssrv.a.

To specify the library best for you, edit the Makefile in the examples directory
of the Sentinel LM shipment directory. Change the value of the macro,
LICENSE_LIBS. By default, it specifies the library libls.a to link with, via -lls.
Change it to -lnonet or -llssrv.

Now you are ready to compile and link a licensed application. Try relinking
the sample applications and examples in the examples directory.

Testing and Debugging Your Application

The Sentinel LM client library has built-in default responses to all
exceptional conditions that may arise. Custom exception handlers can also
be registered with the Sentinel LM Application Library. Each error condition
handler must be explicitly registered. The default error handlers will be used
for those errors for which no explicit handlers are registered. See Appendix
C, “Sentinel LM Error and Result Codes,” on page 397.

Disabling Licensing

The macro, NO_LICENSE, in the lserv.h file can be set to completely disable
software licensing, for instance during debugging. This replaces all Sentinel
LM function calls with void statements. Be sure to enable before shipping
your application.

Library Tracing

You can also enable the tracing of internal operation of the Sentinel LM cli-
ent library by calling VLSsetTraceLevel. See Chapter 3, “Tracing Sentinel
LM Operation,” on page 132.
Sentinel LM Programmer’s Reference Manual 17

Chapter 2 – Protecting Your Application with the Application Library
Sample Programs

Each platform has an examples directory. For UNIX platforms this includes a
file called Makefile. Makefile can be used to build the sample programs, utili-
ties, and to customize parts of Sentinel LM. For Windows platforms, the file
is called sample32.mak.

Below is a list of the available sample programs, utilities, and Sentinel LM
components. However, for the very latest list of such files included on the
release, see the \MsvcDev\Samples and \MsvcDev\Custom subdirectories in
the Sentinel LM installation directory.

Sample Program Summary

The following table lists the sample programs, the features illustrated in
each, and on which platforms the programs are available.

Note: Programs ending in 1 also have 0 versions without licensing.

Sample Programs, Features, and Platforms

Programs Features Platforms

bounce Simple function macros Windows NT/2000/XP, Windows 95/
98/ME

dots1 Simple function macros UNIX, Windows NT/2000/XP,
Windows 95/98/ME

tutor1 Simple function macros UNIX

timer Simple function macros
and using timer signals

UNIX

single Single-call licensing UNIX

stars1 LSAPI function calls and
error handlers

UNIX
18 Sentinel LM Programmer’s Reference Manual

Notes on Security
Customization Samples

On the UNIX platforms the following components/files are available:

On the Windows platforms the following components/files are available:

Notes on Security

Sentinel LM uses proprietary, advanced anti-hacking techniques to safe-
guard against malicious attempts to alter its intended mode of use.

Customization Sample Files

Component File(s)

Linking Makefile

The license manager server.o

lsdecode lsde.o

lslic lslic.c

lsmon lsmon.c

lswhere lswhere.c

Challenge-response crexamp.c, chalresp.[c h], md4.[c h]

Customization Sample Files on Windows

Component File(s)

the license server lservdown.[c dsp], lserv.h

licence generator echoid32.dsp, echomain.c

lsdecode lsde.o

lslic lslic.[c dsp]

lsmon lsmon.[c dsp]

lswhere lswhere.[c dsp dsw ncb opt]

Challenge-response crexamp.c, chalresp.[c h], md4.[c h]
Sentinel LM Programmer’s Reference Manual 19

Chapter 2 – Protecting Your Application with the Application Library
Sentinel LM uses proprietary encryption and decryption algorithms for all
network communication to guard against wire tapping. All messages are
time-stamped to thwart attempts at replaying encrypted messages in
response to authorization requests. Critical licensing information required
by the license server is encrypted to the network licenses by a separate set of
encryption algorithms.

You can add an additional layer of security with your own encryption and
decryption algorithms to the network licenses.

In addition to customizing encryption algorithms you can use the chal-
lenge-response mechanism to authenticate client-server communications.
See Chapter 3, “Sentinel LM Client API,” on page 21 or refer to Windows
License Code Generator Help for more details.

Finally, developers can strengthen their legal position if their license agree-
ment includes the following statement:

“Removal, emulation, or reverse engineering of all or any part of this
product or its protection constitutes an unauthorized modification to
the product and is specifically prohibited. Nothing in this license
statement permits you to derive the source or assembly code of files
provided to you in executable or object formats.”

Such language closes major loopholes in the copyright laws of many
nations.

Protecting Against Time Tampering

Software-based license protection schemes may break down if the end user
changes the system time. The Sentinel LM license server is configured to
detect tampering of the system clock.

The Sentinel LM license server will verify at start up and periodically there-
after, whether the system clock has been altered. If it detects evidence of
such tampering, it discards licenses with an expiration date. You also have
the option of implementing your own functionality to detect system clock
changes.
20 Sentinel LM Programmer’s Reference Manual

Chapter 3
Sentinel LM Client API

Using the Sentinel LM client API, the following integration styles of varying
complexity are supported:

■ The simplest style requires adding only two function calls to the
application program. During program initialization, a call is made to
VLSlicense to initialize contact with the license server and
automatically update the license code. Then, during program
termination, a call is made to VLSdisableLicense to disable licensing
and return the license code. Any additional communication required
with the license server is automatically handled by the client library.

Note: Throughout this manual, we refer to getting license codes and returning
or releasing license codes. Although it is convenient to think of license
management this way, it is important to realize that Sentinel LM does not
physically transfer license codes from the license server to the client or vice
versa, but instead grants or denies permission to use a license code
depending on the license code contents.

■ A style providing greater flexibility requires the use of four different
calls within the application program. During program initialization,
calls are made to VLSinitialize to initialize the client library and then
to LSRequest to request authorization. VLSinitialize should be called
only once. During program termination, calls are made to LSRelease
to release the authorization and then to VLScleanup to clean up the
client library. VLScleanup should be called only once.
Sentinel LM Programmer’s Reference Manual 21

Chapter 3 – Sentinel LM Client API
■ The full featured function interface is recommended when using
advanced licensing features. This interface is compliant with the
industry LSAPI standard. This style uses the API calls described in the
intermediate style above, but is augmented by calls to other library
functions.

This chapter describes all the function calls available in the Sentinel LM
Application Programming Interface (API), which includes the industry
standard, LSAPI. All function calls, return codes, and data types that begin
with the LS prefix are part of the LSAPI standard. The APIs that begin with
the VLS prefix are the Sentinel LM extensions that make licensing easier and
more powerful.

All function calls return the status code LS_SUCCESS if successful or a spe-
cific error code indicating the reason for failure otherwise. For more
information about applicable error codes, see “Error Handling” on
page 127.

On Win32 and UNIX computers, there are three sets of client libraries:

■ Stand-alone: For stand-alone operation without requiring a network
license server. The functions not supported in the stand-alone client
library are actually present but do not perform any meaningful
action. You do not need to make any source code changes when
moving from a Sentinel LM network client library to a stand-alone
client library.

■ Network: For any operation requiring a network license server.

■ Integrated: For both stand-alone and network operations. We
recommend you to link with this library if you would like to support
both stand-alone and network license management. Even if you are
not sure if you need to support both, you may still consider using this
library for future expansion. Applications linked with this client
library can obtain stand-alone licenses from a local file or network
licenses from a network license server. There are special control flags
enabling developers to customize the behavior of choosing between
stand-alone and network libraries.
22 Sentinel LM Programmer’s Reference Manual

Multiple authorizations can be requested within an application for a feature
and feature version. Each authorization must be released and updated sepa-
rately as the license server treats these authorizations as separate clients. A
handle that uniquely identifies an authorization will be returned for each
LSRequest call using the argument, lshandle. This handle is also used in
other Sentinel LM function calls.

License handles may not be shared or passed from one thread to another.
We recommend spawning a thread (or using the main application thread)
and performing all Sentinel LM functions for that single thread. We would
also suggest you not to call different LM functions from separate threads

Available client licensing function calls can be separated into the following
categories:

■ Basic client licensing functions

■ Challenge-response

■ Client configuration

■ Client query

■ Feature query

■ Client utility

■ Error handling

■ Tracing Sentinel LM operation

■ Redundancy

■ Queuing

■ Commuter

■ Capacity
Sentinel LM Programmer’s Reference Manual 23

Chapter 3 – Sentinel LM Client API
Basic Client Licensing Functions

Quick Client Licensing Functions

The following table summarizes the quick client functions:

VLSlicense

Initializes contact with the license server, requests authorization and auto-
matically updates the license.

Syntax LS_STATUS_CODE VLSlicense(
unsigned char *featureName,
unsigned char *version,
LS_HANDLE *lshandle);

Quick Client Licensing Function

Function Description

VLSlicense Performs single-call licensing

VLSdisableLicense Disables single-call licensing

Client Server Static Library DLL

Argument Description

featureName Name of the feature for which the licensing code
is requested. May consist of any printable
characters. Limited to 24 characters.

version Version of the feature for which the licensing code
is requested. May consist of any printable
characters. Limited to 11 characters.

lshandle (out) This handle must be used to release this license
code by calling VLSdisableLicense. Space must be
allocated by the caller.
24 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
Note: Length limitations exist on feature name and version depending on the
type of license you want to issue to your customer. See the Sentinel LM
Developer’s Guide for details.

Description This function obtains a license using LSRequest and then automatically
updates the license after 80% of the license lifetime has passed using the
LSUpdate function. This function uses timers (SIGALRM on UNIX) to update
a license periodically. You should not update that license yourself using
LSUpdate or any other license renewal function. When you wish to release
the license (terminate the automatic updates), you must use the API func-
tion VLSdisableLicense, which removes the timer and releases the license. If
you release the license using LSRelease and your application continues to
run, the timer will keep trying to renew an invalid license since it does not
know that you have released the license yourself.

On UNIX, since there is only one timer available to each running applica-
tion, there will be a conflict if your application wishes to use timers and use
VLSlicense at the same time. To accommodate multiple simultaneous uses of
a single timer, the Sentinel LM API provides a generalized version of the
timer functions.

From one instance of an application you can call VLSlicense only once.
VLSlicense can automatically update only a single handle. Subsequent calls
to VLSlicense will fail.

Note: This function is available on most UNIX platforms. This function may not be
available on platforms that do not support a timer event or a time signal.
Sentinel LM Programmer’s Reference Manual 25

Chapter 3 – Sentinel LM Client API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSlicense Error Codes

Error Code Description

VLS_APP_UNNAMED • featureName is NULL
• version is NULL

Both feature and version cannot be NULL at
the same time.

VLS_CALLING_ERROR • lshandle is NULL.
• Attempted to use stand-alone mode with

network only library, or network mode with
stand-alone library.

VLS_NO_LICENSE_GIVEN Invalid handle specified. Handle is already
released and destroyed from previous license
operations.

LS_INSUFFICIENTUNITS License server does not currently have
sufficient licensing units for requested feature
to grant a license.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature, version and
capacity.

VLS_TRIAL_LIC_EXHAUSTED Trial license has expired.

LS_LICENSE_EXPIRED License has expired.

VLS_APP_NODE_LOCKED Requested feature is node locked, but request
was issued from an unauthorized machine.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

VLS_NON_REDUNDANT_
SRVR

License server is non-redundant and therefore
cannot support this redundancy-related
operation.
26 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLS_SERVER_SYNC_IN_
PROGRESS

License server synchronization in process.

VLS_ELM_LIC_NOT_ENABLE The license was converted using the license
conversion utility (from a 5.x license), but the
DLT process is not running.

VLS_FEATURE_INACTIVE Feature is inactive on specified license server.

VLS_MAJORITY_RULE_
FAILURE

Majority rule failure prevents token from being
issued.

VLS_NO_SERVER_RESPONSE Communication with license server has timed
out.

VLS_BAD_SERVER_
MESSAGE

Message returned by license server could not
be understood.

VLS_NO_SERVER_RUNNING License server on specified host is not available
for processing license operation requests.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

LS_NO_NETWORK Failed to initialize Winsock wrapper. (Only
applicable if using network-only library.)
Generic error indicating network failure.

VLS_INTERNAL_ERROR An internal error has occurred in the
processing.

VLSlicense Error Codes (Continued)

Error Code Description
Sentinel LM Programmer’s Reference Manual 27

Chapter 3 – Sentinel LM Client API
VLSdisableLicense

This function disables single-call licensing and returns the license code.

Syntax LS_STATUS_CODE VLSdisableLicense(
LS_HANDLE *lshandle);

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Client Server Static Library DLL

Argument Description

lshandle The handle which had been obtained earlier by a call to
VLSlicense.

VLSdisableLicense Error Codes

Error Code Description

VLS_CALLING ERROR lshandle is an ambiguous handle; it is not
exclusively active or exclusively queued.

VLS_ALL_UNITS_RELEASED All units have already been released.

VLS_RETURN_FAILED Generic error indicating that the license
could not be returned.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_NO_SERVER_RESPONSE Communication with license server timed
out.

VLS_BAD_SERVER_MESSAGE Message returned by server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.
28 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Standard Client Licensing Functions

The following table summarizes the standard client functions:

VLSinitialize

Initializes the client library.

Syntax LS_STATUS_CODE VLSinitialize(void);

This function has no arguments.

Description This call must be made before any Sentinel LM function can be called.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_INTERNAL_ERROR An error occurred with respect to the
serialization/customization of Sentinel LM
files.

Standard Client Licensing Functions

Function Description

VLSinitialize Initializes the client library.

LSRequest Requests an authorization license code.

LSUpdate Called periodically to renew the license code and inform the
license server that it is alive.

LSRelease Releases an authorization license code.

VLScleanup Called when finished using the client library.

Client Server Static Library DLL

VLSdisableLicense Error Codes (Continued)

Error Code Description
Sentinel LM Programmer’s Reference Manual 29

Chapter 3 – Sentinel LM Client API
Note: Applications that call the UNIX standard-C library function, fork, generally
follow this call with an exec function call to re-initialize all global values.
For some applications, however, this may be undesirable. In such cases,
issue the call before the first LSRequest call and after each fork call. This
call is not necessary for applications that do not use fork or exec after fork-
ing. Calling this function unnecessarily does not have any negative side
effects.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

See Also “VLScleanup” on page 41.

VLSinitialize Error Codes

Error Code Description

LS_NORESOURCES An error occurred in attempting to allocate memory
needed by function.

LS_NO_NETWORK Failed to initialize Winsock wrapper. (Only applicable if
using network-only library.)
30 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
LSRequest

Requests an authorization license code from the license server.

Syntax LS_STATUS_CODE LSRequest(
unsigned char *licenseSystem,
unsigned char *publisherName,
unsigned char *featureName,
unsigned char *version,
unsigned char *unitsReqd,
unsigned char *logComment,
unsigned char *challenge,
LSHANDLE *lshandle);

Client Server Static Library DLL

Argument Description

licenseSystem Unused. Use LS_ANY as the value of this variable.
LS_ANY is specified to indicate a match against installed
license systems.

publisherName A string giving the publisher of the product. Limited to 32
characters and cannot be NULL. Company name and
trademark may be used.

featureName Name of the feature for which the licensing code is
requested. May consist of any printable characters and
cannot be NULL. Limited to 24 characters.

version Version of the feature for which the licensing code is
requested. May consist of any printable characters. Limited
to 11 characters.

unitsReqd
(IN/OUT)

The number of licenses required. The license server verifies
that the requested number of units exist and may reserve
those units. The number of units available is returned.
If the number of licenses available with the license server is
less than the requested number, the number of available
licenses will be returned using unitsReqd. If unitsReqd is
NULL, a value of 1 unit is assumed.
Sentinel LM Programmer’s Reference Manual 31

Chapter 3 – Sentinel LM Client API
Description This function is used by the application to request licensing resources to
allow the product to execute. If the valid license is found, the challenge-
response is computed (if applicable) and LS_SUCCESS is returned. The
challenge-response is computed if a non-NULL value is passed for the
challenge argument. At minimum, the featureName and Version strings are
used to identify matching license(s). When the application has completed
execution, it must call LSRelease to release the license resource.

If the number of units required is greater than the number of units available,
then LSRequest will not grant the license.

Every client should complete this call successfully before commencing
execution of the application or the feature.

If the default error handler is not used, the client application must check the
code returned by the LSRequest call and should continue only if
LS_SUCCESS is returned. The default error handler will exit the application
on error.

Note: If queuing is desired, you must use VLSqueuedRequest instead of

logComment A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this
argument if no log comment is desired. Maximum of 100
characters.

challenge The challenge structure. If the challenge-response
mechanism is not being used, this pointer must be NULL.
The space for this structure must be allocated by the calling
function. The response to the challenge is provided in the
same structure, provided a license was issued, i.e., provided
the function LSRequest returned LS_SUCCESS. For details of
the challenge-response mechanism and how to use it
effectively, see page 50.

lshandle (OUT) The handle for this request is returned in lshandle. This
handle must be used to later update and release this license
code. A client can have more than one handle active at a
time. Space for lshandle must be allocated by the caller.

Argument Description
32 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
LSRequest.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

LSRequest Error Codes

Error Code Description

VLS_CALLING_ERROR • lshandle is NULL.
• challenge argument is non-NULL, but cannot be

understood.
Attempted to use stand-alone mode with network-
only library, or network mode with stand-alone
library.

VLS_APP_UNNAMED • featureName is NULL
• version is NULL.

Both feature name and version cannot be Null at the
same time.

VLS_NO_LICENSE_
GIVEN

• unitsReqd is zero
• lshandle is not a valid handle.

License is only available at license server that does
not match mode settings, e.g. network license
available when stand-alone mode, etc.

VLS_NO_SUCH_
FEATURE

License server does not have license that matches
requested feature and version.

LS_INSUFFICIENTUNITS • License server does not currently have sufficient
licensing units for requested feature to grant
license.

• The units_reqd parameter of the call contains the
hard limit of the feature for which authorization
was requested if this request exceeded the hard
limit of the license.

LS_LICENSE_EXPIRED License is expired.

VLS_TRIAL_LIC_
EXHAUSTED

Trial license expired or trial license usage exhausted.

VLS_APP_NODE_
LOCKED

Requested feature is node locked, but request was
issued from unauthorized machine.
Sentinel LM Programmer’s Reference Manual 33

Chapter 3 – Sentinel LM Client API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

See Also ■ “VLSrequestExt2” on page 45

VLS_USER_EXCLUDED User or machine excluded from accessing requested
feature.

VLS_VENDORIDMISMA
TCH

The vendor identification of requesting application
does not match the vendor identification of the
feature for which the license server has the license.

VLS_SERVER_SYNC_IN_
PROGRESS

License server synchronization in process.

VLS_FEATURE_
INACTIVE

Feature is inactive on specified license server.

VLS_MAJORITY_RULE_
FAILURE

Majority rule failure prevents token from being
issued.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available for
processing license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE No license server has been set and unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate memory
needed by function.

VLS_INTERNAL_ERROR An internal error has occurred in the processing.

VLS_ELM_LIC_NOT_
ENABLE

The license was converted using the license
conversion utility (from a 5.x license), but the DLT
process is not running.

LSRequest Error Codes (Continued)

Error Code Description
34 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
■ “Challenge-response Mechanism” on page 50

■ “VLSsetTimeoutInterval” on page 67

■ “VLSqueuedRequest and VLSqueuedRequestExt” on page 274

LSUpdate

Once an authorization license has been received, the client must call
LSUpdate periodically to renew its license and inform the license server that
it is alive if automatic renewal is disabled.

Syntax LS_STATUS_CODE LSUpdate(
LS_HANDLE lshandle,
unsigned long *unused1,
long *unused2,
unsigned char *unused3,
LS_CHALLENGE *unused4);

Description Currently the client library defaults to automatic license renewal. You do
not need to call LSUpdate unless you disable automatic license renewals.
Even when automatic license renewal is active, you should check
periodically on the update status by calling VLSgetRenewalStatus. (See
“VLSgetRenewalStatus” on page 77.)

If automatic license renewals are disabled (if the platform you are working
on doesn’t support timers or you don’t want to rely on timers to renew the
license), the client must call LSUpdate periodically to renew its license and
inform the license server of its continued need for a license.

Argument Description

lshandle This must be the handle previously returned by the
corresponding LSRequest call.

unused1 Unused. Use LS_DEFAULT_UNITS as the value.

unused2 Unused. Use NULL as the value.

unused3 Use NULL as the value.

unused4 Use NULL as the value.
Sentinel LM Programmer’s Reference Manual 35

Chapter 3 – Sentinel LM Client API
If you do call LSUpdate manually to verify the client is still attached to the
license server, you should disable automatic renewals before calling
LSUpdate.

Local Vs. Remote License Renewal

In order to reduce network traffic and communication overhead, Sentinel
LM checks whether the license lifetime is close to expiration, and contacts
the license server only if it is about to expire. Otherwise, it returns the
success code. This is called local renewal. There is no appreciable overhead
in renewing a license too frequently, and non-timer based renewal schemes
can use this feature to their advantage.

That part of the lifetime of a license which results in the renewal of the
license by the license server is called the remote renewal period. Its default
value is 80% of the license lifetime. However, for best results, the use of
timers to optimally control the frequency of renewal calls is recommended.

Note: Auto timers will not work in a Win32 console application.

Timer-based renewal schemes are not required to use local renewals at all.
The period of the timer can be such that LSUpdate calls occur only during
the remote renewal period of the license.

The Sentinel LM API also provides the function, VLSdisableLocalRenewal,
which forces all future LSUpdate requests to go to the license server.

VLSgetRenewalStatus provides information on whether the last successful
update was local or remote. See page 74 for these and other related function
calls.

Lifetime of a License

Local Renewals Remote Renewals
36 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
Note: LSUpdate is a signal-safe function, so that it can be called from signal
handlers and can be interrupted by other signal handlers without any
known ill effects. Other functions are not guaranteed to be signal-safe.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

LSUpdate Error Codes

Error Code Description

VLS_CALLING_ERROR • lshandle is a queued handle. Cannot use
LSUpdate to update a queued handle.

• challenge argument is non-NULL, but cannot
be understood.

VLS_NO_LICENSE_GIVEN Generic error indicating that license was not
updated.

LS_LICENSETERMINATED Cannot update the license because the license has
already expired.

VLS_NO_SUCH_FEATURE License server does not have license that matches
requested feature, version and capacity.

LS_NOLICENSESAVAILABLE All licenses in use.

LS_LICENSE_EXPIRED License has expired.

VLS_TRIAL_LIC_
EXHAUSTED

Trial license expired or trial license usage
exhausted.

VLS_FINGERPRINT_
MISMATCH

Client-locked; locking criteria does not match.

VLS_APP_NODE_LOCKED Feature is node locked, but the update request
was issued from an unauthorized machine.

VLS_CLK_TAMP_FOUND License server has determined that the client’s
system clock has been modified. The license for
this feature has time-tampering protection
enabled, so the license operation is denied.

VLS_VENDORIDMISMATCH The vendor identification of requesting
application does not match the vendor
identification of the feature for which the license
server has a license.
Sentinel LM Programmer’s Reference Manual 37

Chapter 3 – Sentinel LM Client API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

See Also ■ “VLSbatchUpdate” on page 47

■ “VLSsetTimeoutInterval” on page 67

■ “VLSdisableLocalRenewal” on page 75

■ “VLSenableLocalRenewal” on page 76

■ “VLSisLocalRenewalDisabled” on page 76

■ “VLSgetRenewalStatus” on page 77

■ “VLSsetRemoteRenewalTime” on page 80

VLS_INVALID_DOMAIN The domain of the license server is different from
that of client.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available
for processing license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_BAD_SERVER_
MESSAGE

Message returned by license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_ELM_LIC_NOT_
ENABLE

The license was converted using the license
conversion utility (from a 5.x license), but the DLT
process is not running.

LSUpdate Error Codes (Continued)

Error Code Description
38 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
LSRelease

Requests that the license server release licenses associated with a handle.

Syntax LS_STATUS_CODE LSRelease(
LS_HANDLE lshandle,
unsigned long *units_consumed,
unsigned char *log_comment);

Description Releases the license(s) associated with lshandle, allowing them to be immedi-
ately used by other requesting applications. For a shared license, all client
applications must release their licenses before the license server marks the
license as available.

Client Server Static Library DLL

Argument Description

lshandle The handle returned by the corresponding LSRequest.

units_consumed Number of units required to be released.

log_comment A string to be written by the license server to the
comment field of the usage log file. Pass a NULL value for
this argument if no log comment is desired. Maximum of
100 characters is allowed.
Sentinel LM Programmer’s Reference Manual 39

Chapter 3 – Sentinel LM Client API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

LSRelease Error Codes

Error Code Description

VLS_CALLING_ERROR lshandle is an ambiguous handle; it is not exclusively
active or exclusively queued.

VLS_RETURN_FAILED Generic error indicating that the license could not be
returned.

VLS_ALL_UNITS_
RELEASED

All units already released.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available for
processing the license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed out.

VLS_HOST_
UNKNOWN

Invalid hostName was specified.

VLS_BAD_SERVER_
MESSAGE

Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate memory
needed by function.
40 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
VLScleanup

Cleans up the client library.

Syntax LS_STATUS_CODE VLScleanup(void);

This function has no arguments.

Description After all Sentinel LM calls are done and before exiting, you must call this
function. This function may not be called if the application is being pro-
tected using the Quick-API. Calling VLScleanup after calling
VLSdisableLicense can produce unpredictable results.

Returns The status code LS_SUCCESS is always returned. For a complete list of the
error codes, see Appendix C, “Sentinel LM Error and Result Codes,” on page
397.

See Also “VLSinitialize” on page 29.

Advanced Client Licensing Functions

The following table summarizes the advanced client functions:

Client Server Static Library DLL

Advanced Client Licensing Functions

Function Description

VLSinitialize Initializes the client library.

VLSrequestExt Requests an authorization license.

VLSrequestExt2 Supports capacity and non-capacity requests.

VLSreleaseExt Releases an authorization license.

VLScleanup Called when finished using the client library.

VLSbatchUpdate Updates several license codes at once.
Sentinel LM Programmer’s Reference Manual 41

Chapter 3 – Sentinel LM Client API
VLSrequestExt

Syntax LS_STATUS_CODE VLSrequestExt(
unsigned char *licenseSystem,
unsigned char *publisherName,
unsigned char *featureName,
unsigned char *version,
unsigned long *unitsReqd,
unsigned char *logComment,
LS_CHALLENGE *challenge,
LS_HANDLE *lshandle,
VLSserverInfo *serverInfo);

Client Server Static Library DLL

Argument Description

licenseSystem Unused. Use LS_ANY as the value of this variable.

publisherName • Cannot be Null
• A string giving the publisher of the product. Limited to

32 characters. Company name and trademark may be
used.

featureName Name of the feature for which the licensing code is
requested. May consist of any printable characters. Limited
to 24 characters.

version Version of the feature for which the licensing code is
requested. May consist of any printable characters. Limited
to 11 characters.

unitsReqd
(IN/OUT)

The number of licenses required. If the number of licenses
available with the license server is less than the requested
number, the number of available licenses will be returned
using unitsReqd. If unitsReqd is NULL, a value of 1 unit is
assumed.

logComment A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.
42 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
Description Use VLSrequestExt when using license server hooks. Before calling VLSre-
questExt, you must call VLSinitServerInfo. (See “VLSinitServerInfo” on
page 65.)

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

challenge The challenge structure. If the challenge-response
mechanism is not being used, this pointer must be NULL.
The space for this structure must be allocated by the calling
function. The response to the challenge is provided in the
same structure, provided a license code was issued, i.e.,
provided the function LSRequest returned LS_SUCCESS. For
details of the challenge-response mechanism and how to
use it effectively, see page 50.

lshandle The handle for this request is returned in lshandle. This
handle must be used to later update and release this license.
A client can have more than one handle active at a time.
Space for lshandle must be allocated by the caller.

serverInfo This information is passed to the license server for use in
server hook functions. See “VLSeventAddHook” on
page 367.

Argument Description

VLSrequestExt Error Codes

Error Code Description

VLS_APP_UNNAMED • featureName is NULL
• version is NULL

Both feature name and version cannot be Null
at the same time.

VLS_CALLING_ERROR • lshandle is NULL
• challenge argument is non-NULL
• Attempted to use stand-alone mode with

network-only library, or network mode
with stand-alone library.

VLS_NO_LICENSE GIVEN • unitsReqd is zero
• lshandle is not a valid handle.
Sentinel LM Programmer’s Reference Manual 43

Chapter 3 – Sentinel LM Client API
VLS_NO_SUCH_FEATURE License server does not have license that
matches requested feature, version and
capacity.

LS_NOLICENSESAVAILABLE All licenses in use.

LS_INSUFFICIENTUNITS License server does not currently have
sufficient licensing units for requested feature
to grant license.

LS_LICENSE_EXPIRED License has expired.

VLS_TRIAL_LIC_EXHAUSTED Trial license expired or trial license usage
exhausted.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_CLK_TAMP_FOUND License server has determined that the client’s
system clock has been modified. The license for
this feature has time-tampering protection
enabled, so the license operation is denied.

VLS_VENDORIDMISMATCH The vendor identification of requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

VLS_SERVER_SYNC_IN_
PROGRESS

License server synchronization in process.

VLS_FEATURE_INACTIVE Feature is inactive on specified license server.

VLS_MAJORITY_RULE_
FAILURE

Majority rule failure prevents token from
being issued.

VLS_NO_SERVER_RUNNING License server on specified host is not available
for processing license operation requests

VLS_NO_SERVER_RESPONSE Communication with license server has timed
out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER-FILE No license server has been set and unable to
determine which license server to use.

VLSrequestExt Error Codes (Continued)

Error Code Description
44 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

See Also ■ “Challenge-response Mechanism” on page 50

■ “VLSeventAddHook” on page 367

VLSrequestExt2

See “VLSrequestExt2” on page 306.

VLSreleaseExt

Syntax LS_STATUS_CODE VLSreleaseExt(
LS_HANDLE lshandle,
unsigned long *unused1,
unsigned char *logComment,

VLS_BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_INTERNAL_ERROR Failure occurred in setting timer. (Timer is only
attempted to be set if timer is available for
platform and if license requires timer for
updates.)

VLS_ELM_LIC_NOT_ENABLE The license was converted using the license
conversion utility (from a 5.x license), but the
DLT process is not running.

VLSrequestExt Error Codes (Continued)

Error Code Description

Client Server Static Library DLL
Sentinel LM Programmer’s Reference Manual 45

Chapter 3 – Sentinel LM Client API
VLSserverInfo *serverInfo);

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

lshandle The handle returned by the corresponding LSRequest.

unused1 Unused. Use the value, LS_DEFAULT_UNITS.

logComment A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this argument
if no log comment is desired. Maximum of 100 charactersb.

serverInfo This information is passed to the license server for use in
server hook functions. See “VLSeventAddHook” on page 367.

VLSreleaseExt Error Codes

Error Code Description

VLS_CALLING_ERROR lshandle is ambiguous handle; it is not
exclusively active or exclusively queued.

VLS_RETURN_FAILED Generic message indicating that the license
could not be returned.

VLS_ALL_UNITS_RELEASED All units released.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has timed
out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.
46 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

See Also “VLSeventAddHook” on page 367

VLSbatchUpdate

Updates several license authorization at once. Currently the client library
defaults to automatic license renewal. You do not need to call this unless
you disable the automatic license renewal. Please note that this does not
updates capacity authorizations.

Syntax LS_STATUS_CODE VLSbatchUpdate(
int *numHandles,
LS_HANDLE *lshandle,
unsigned long *unused1,
long *unused2,
unsigned char *unused3,
LS_CHALLENGE *unused4,
LS_STATUS_CODE *status);

Description API function interface for updating several licenses. It handles properly the
fact that some of the licenses may need to be updated locally, and some
remotely. In case the handles need to be updated on different license servers,

Client Server Static Library DLL

Argument Description

numHandles Specifies the number of handles.

lshandle (in) Array of numHandles handles, allocated by caller.

unused1 Currently ignored—pass in a NULL.

unused2 Currently ignored—pass in a NULL.

unused3 Use NULL as the value.

unused4 Use NULL as the value.

status (out) Array of numHandles status codes, allocated by caller.
Sentinel LM Programmer’s Reference Manual 47

Chapter 3 – Sentinel LM Client API
use the VLSbatchUpdate calls interspersed with VLSsetContactServer calls.
This function contacts only one license server for the updates. This function
does not call built-in error handlers at all. There is no limit on the number of
handles passed.

Returns If everything fails, this function will return a non-LS_SUCCESS code. For
failures in individual updates of license codes, this function will return
LS_SUCCESS, but the value of the corresponding status element will be set
to the error code. Otherwise, it will return the following error codes:

VLSbatchUpdate Error Codes

Error Code Description

LS_BADHANDLE Invalid handle

VLS_CALLING_ERROR challenge argument is non-NULL, but cannot
be understood.

VLS_CALLING_ERROR License server used for update is not the same
one that was used for acquiring the license.

VLS_NO_LICENSE_GIVEN Generic error indicating that the license was
not updated.

VLS_NO_SUCH_FEATURE License server does not have license that
matches requested feature, version and
capacity.

LS_LICENSETERMINATED Cannot update license because license
already expired.

LS_NOLICENSESAVAILABLE All licenses in use.

LS_LICENSE_EXPIRED License has expired.

VLS_USER_EXCLUDED User or machine are excluded from accessing
requested feature.

VLS_APP_NODE_LOCKED Requested feature is node locked but update
request was issued from unauthorized
machine.
48 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
See Also ■ “LSUpdate” on page 35

■ “Challenge-response Mechanism” on page 50

■ “VLSsetTimeoutInterval” on page 67

■ “VLSdisableLocalRenewal” on page 75

■ “VLSenableLocalRenewal” on page 76

■ “VLSisLocalRenewalDisabled” on page 76

■ “VLSsetRemoteRenewalTime” on page 80

VLS_CLK_TAMP_FOUND License server has determined that the client’s
system clock has been modified. The license
for this feature has time-tampering
protection enabled, so the license operation
is denied.

VLS_VENDORMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has timed
out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_BUFFER_TOO_SMALL An error occurred in the use of an internal
buffer.

VLSbatchUpdate Error Codes (Continued)

Error Code Description
Sentinel LM Programmer’s Reference Manual 49

Chapter 3 – Sentinel LM Client API
Challenge-response Mechanism

The challenge-response mechanism can be used by a licensed application to
authenticate the license server.

Syntax typedef struct {
unsigned long ulReserved;
unsigned long ulChallengedSecret;
unsigned long ulChallengeSize;
unsigned char ChallengeData[30];
} CHALLENGE;

typedef CHALLENGE LS_CHALLENGE;

typedef struct {
 unsigned long ulResponseSize;
 unsigned char ResponseData[16];
} CHALLENGERESPONSE;

Member Description

ulReserved LSAPI requires this to be set to 0.

ulChallengedSecret The index of the secret which the client application
wishes the license server to use in computing its
response to this challenge. This value may range from 1
to the number of secrets provided. The actual secrets
are provided to the license server through the license
code produced using the code generator and can
include characters in the range A - Z, and 1 - 9.

ulChallengeSize Number of characters in ChallengeData. This value
cannot be 0.

ChallengeData The actual string that is used in challenging the license
server. This is a string of at most 30 characters, each of
which can have any values, including 0.

ulResponseSize Number of characters in the response to the challenge.

ResponseData The string of characters representing the actual
response.
50 Sentinel LM Programmer’s Reference Manual

Basic Client Licensing Functions
Description In challenge-response, the license server associates a secret with a feature,
provided by the license code. The application also contains this secret. In the
license server validation process, an application will “challenge” the license
server with a data string. The license server computes a response according
to some previously arranged algorithm using the values, data and secret,
which it returns. The client application locally computes the expected
response using data and secret, and verifies that the expected response
matches the response returned by the license server.

In order for the authentication mechanism to work correctly and securely,
both the license server and the client application must use the same
algorithm to compute the response given the values of data and secret. LSAPI
requires the use of the software, “RSA Data Security, Inc. MD4 Message
Digest Algorithm” provided by RSA Data Security, Inc. to compute the
response.

In practice, to save execution time and space, the client application need not
invoke the MD4 Message Digest Algorithm at run time to calculate the
response. Challenge-response pairs can instead be maintained in a pre-
computed table.

Sentinel LM allows for the usage of multiple secrets, with secrets indexed
starting at 1. Client applications can challenge the license server to produce
a response for a string date using the secret[i], where i is the index of the
secret (maximum is 7).

The following structures are used by the challenge parameter in challenge-
response. challenge is an in/out parameter for the LSRequest and
VLSrequestExt function calls and must be properly allocated and initialized
by the calling process. Refer to the sample files, crexamp.c, chalresp.c, and
md4.c for additional details on using this mechanism.

The parameter used to pass the challenge structure is also used by the
library to return the response structure. The CHALLENGE pointer must
therefore be typecast to CHALLENGERESPONSE * to obtain the correct
response after the function call.

The response to a challenge made with any function call, for example,
LSRequest is valid only if that function call returns LS_SUCCESS. If
LS_SUCCESS is not returned, the response to the challenge is undefined. For
Sentinel LM Programmer’s Reference Manual 51

Chapter 3 – Sentinel LM Client API
more information on how to associate secrets with a features, see
“VLScgAllowSecrets” on page 202, “VLScgSetNumSecrets” on page 203,
and “VLScgSetSecrets” on page 202.

Client Configuration Functions

The Client Configuration Functions allow an application to retrieve or over-
write the default setting. The following table summarizes the functions that
enable certain properties of the client library to be configured.

Client Configuration Functions

Function Description

VLSsetContactServer Defines the license server’s host name.

VLSgetContactServer Retrieves the license server’s host name.

VLSsetServerPort Defines the license server’s communication port.

VLSgetServerPort Obtains the license server’s communication port.

VLSinitMachineID Sets the fields in machineID to default values.

VLSgetMachineID Sets machineID values for the current host.

VLSmachineIDtoLockCode Computes the machineID locking code.

VLSgetServerNameFrom
Handle

Retrieves the license server’s name based on
handle_id.

VLSinitServerList Initializes a list of default license servers to
search for a license.

VLSgetServerList Retrieves the default license server list.

VLSinitServerInfo Initializes the license serverInfo data structure to
default values.

VLSsetHostIdFunc Sets the host ID function.

VLSsetBroadcastInterval Configures broadcast behavior.

VLSgetBroadcastInterval Retrieves broadcast behavior parameters.

VLSsetTimeoutInterval Configures timeout behavior.

VLSgetTimeoutInterval Retrieves timeout behavior parameters.
52 Sentinel LM Programmer’s Reference Manual

Client Configuration Functions
Note: There are also function calls relating to local vs. remote license renewal.
For a detailed description, see “Local vs. Remote Renewal of License
Tokens” on page 74.

VLSsetContactServer

Specifies the computer the licensed application will contact for the license
server.

Syntax LS_STATUS_CODE VLSsetContactServer(
char *serverName);

Description Each licensed application must be aware of the location of a Sentinel LM
license server on the network. By default, on the first communication
transaction each application first checks the environment variable,
LSFORCEHOST for the name of the license server computer. If that
environment variable exists, but the license server computer it specifies is
not found, Sentinel LM returns an error. If the LSFORCEHOST environment
variable does not exist, the application checks the environment variable,
LSHOST, for the name of the license server computer. If the variable is not

VLSsetHoldTime Sets license hold time.

VLSsetSharedId/
VLSsetTeamId

Redefines shared ID functions.

VLSsetSharedIdValue/
VLSsetTeamIdValue

Registers a customized shared ID value.

Client Server Static Library DLL

Client Configuration Functions (Continued)

Function Description

Argument Description

serverName The host name or IP address of the computer running the
license server.
Sentinel LM Programmer’s Reference Manual 53

Chapter 3 – Sentinel LM Client API
set, it looks for a text file named LSHOST or lshost, which should contain the
name of the license server computer, usually in the current directory. If that
is also not available, the client uses a broadcast mechanism on the local
subnet to determine the existence and location of a Sentinel LM license
server. If a client makes a Sentinel LM function call that involves contacting
the license server and the license server is not found, the function call
returns the error code, VLS_NO_SERVER_FOUND. Once contact has been
established, the name of the computer on which the license server is
running is cached and all future transactions (with the exception of
VLSdiscover) are directed to that license server only. If contact with that
license server is lost, the Sentinel LM client library returns an error.

After a license is successfully requested (via LSRequest or its variants)
Sentinel LM will remember the name of the license server host which was
contacted to obtain the license. In any further client-server communication
involving this handle obtained by the client, Sentinel LM will always
communicate with the license server from which it obtained the license,
regardless of intervening VLSsetContactServer calls. The license server
name set by VLSsetContactServer will be contacted only for operations that
do not involve an already valid handle. Therefore, in case the original
license server goes down, you must request a fresh license (hence a fresh
handle) from the new license server you wish to use, instead of attempting
to send license update messages to the new license server, unless redundant
license servers are in use. When a redundant license server fails, all clients’
are automatically reconnected to one of the other redundant license servers.

VLSsetContactServer resets the cached host name to the value of
serverName. It overrides LSFORCEHOST and the LSHOST environment
variables and the LSHOST file. All future transactions will be directed to that
host regardless of the validity of the host name or whether a license server is
running at that host.
54 Sentinel LM Programmer’s Reference Manual

Client Configuration Functions
The roles are summarized in the table below:

Note: In the above discussion, NO-NET, NO_NET, no_net, and no-net are
synonymous.

In general, serverName is obtained in the following order:

1. Any name supplied with VLSsetContactServer call.

2. The LSFORCEHOST environment variable.

3. The LSHOST environment variable–Checked only at application start-
up.

4. The lshost file–Checked only at application startup.

In case of libls.a and liblssrv.a, if no serverName is specified using
VLSsetContactServer, the LSHOST environment variable, or the LSHOST file,
a subnet broadcast is used to find a license server.

Linked with Server Name Meaning

libls.a Valid host name Client should communicate with the license
server on serverName.

NULL Client should determine serverName using
default mechanism.

NO-NET Calling error.

libnonet.a Valid host name Calling error.

NULL Communicate with integrated license server.

NO-NET Communicate with integrated license server.

liblssrv.a Valid host name Client should communicate with the license
server on serverName.

NULL Client should determine serverName using
default mechanism.

NO-NET Communicate with integrated license server.
Sentinel LM Programmer’s Reference Manual 55

Chapter 3 – Sentinel LM Client API
The environment variable LSFORCEHOST overrides LSHOST and the broad-
cast mechanism.

In case of libnonet.a, Sentinel LM communicates with the stand-alone license
server with no network communication.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

See Also “VLSgetContactServer” on page 56.

VLSgetContactServer

Retrieves the license server name.

Syntax LS_STATUS_CODE VLSgetContactServer(
char *outBuf,
int outBufSz);

VLSsetContactServer Error Codes

Code Description

VLS_CALLING_ERROR Attempted to use stand-alone mode with network-
only library, or network mode with stand-alone
library.

VLS_NO_RESOURCES An error occurred in attempting to allocate
memory needed by function.

Client Server Static Library DLL

Argument Description

outBuf (out) Contains a single license server name, space allocated by caller.

outBufSz Size of outBuf.
56 Sentinel LM Programmer’s Reference Manual

Client Configuration Functions
Description Returns the name of the license server host that will be contacted, in case
the client has already set the license server name. Otherwise this function
will fail. If the Sentinel LM library is running in stand-alone mode, it returns
the string, VLS_STANDALONE.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

See Also “VLSsetContactServer” on page 53.

VLSsetServerPort

Sets the port number.

Syntax int VLSsetServerPort(int);

Description Defines the license server’s communication port.

Returns Does not return anything.

VLSgetContactServer Error Codes

Error Code Description

VLS_CALLING_ERROR outBuf is NULL.

VLS_NO_SERVER_FILE The license server has not been set and is unable
to determine which license server to use.

LS_BUFFER_TOO_SMALL outBuf is not large enough to store license server’s
name.

Client Server Static Library DLL
Sentinel LM Programmer’s Reference Manual 57

Chapter 3 – Sentinel LM Client API
VLSgetServerPort

Retrieves the port number.

Syntax int VLSgetServerPort(void);

Description Obtains the number of the port to which all network messages intended for
the license server will be sent. The default configured port number is 5093.

Returns The currently set license server port number is returned.

VLSinitMachineID

Initializes the fields of the machineID data structure to the default values for
the current host.

Syntax LS_STATUS_CODE VLSinitMachineID(
VLSmachineID *machineID);

Description Sets the fields in machineID to their default values.

The license manager uses the following data structure to define the
characteristics of a machine.

Client Server Static Library DLL

Client Server Static Library DLL

Argument Description

machineID User allocated structure where the machine ID will
be maintained.
58 Sentinel LM Programmer’s Reference Manual

Client Configuration Functions
typedef struct {
unsigned long id_prom;
char ip_addr[VLS_MAXLEN];
unsigned long disk_id;
char host_name[VLS_MAXLEN];
char ethernet[VLS_MAXLEN];
unsigned long nw_ipx;
unsigned long nw_serial;
char portserv_addr[VLS_MAXLEN];
unsigned long custom;
unsigned long reserved;
char cpu_id;
unsigned long unused2;
} VLSmachineID;

The structure is called the machineID, and the contents of the first nine fields
are called the fingerprint for the machine to which the contents apply. In
practice, a developer may choose to use some subset of these fields for a
given machine. To specify which fields are to be used, a flag word called a
lock_selector is defined. A lock selector is a number which sets aside one bit
for each fingerprinting element type. Each bit designates a locking criterion,
and the lock selector represents the fingerprint elements for a given
machine.

Note: A lock selector does not describe the fingerprint, it only designates which
fields in the machine ID are to be used to specify the fingerprint.

The masks which define each locking criterion are given below.

#define VLS_LOCK_ID_PROM 0x1
#define VLS_LOCK_IP_ADDR 0x2
#define VLS_LOCK_DISK_ID 0x4
#define VLS_LOCK_HOSTNAME 0x8
#define VLS_LOCK_ETHERNET 0x10
#define VLS_LOCK_NW_IPX 0x20
#define VLS_LOCK_NW_SERIAL 0x40
#define VLS_LOCK_PORTABLE_SERV 0x80
#define VLS_LOCK_CUSTOM 0x100
#define VLS_LOCK_PROCESSOR_ID 0x200
Sentinel LM Programmer’s Reference Manual 59

Chapter 3 – Sentinel LM Client API
The mask that defines all locking criteria is:

#define VLS_LOCK_ALL 0x3FF

The machine ID and lock selector are input to the license generator and
encrypted to create a locking code which then becomes part of the license
that authorizes use of an application. When a license is requested by the
application, a fingerprint for the machine is calculated and used to create a
locking code. This must compare favorably with its counterpart in the
license before execution of the application can be authorized.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetMachineID

Syntax LS_STATUS_CODE VLSgetMachineID(
unsigned long lock_selector_in,
VLSmachineID *machineID,
unsigned long *lock_selector_out);

VLSinitMachineID Error Codes

Error Code Description

VLS_MACHINE_FAILURE_CODE machineID is NULL.

Client Server Static Library DLL

Argument Description

lock_selector_in User provided mask specifying locking criteria to be read.

machineID User provided machine ID from which locking criteria will
be read.

lock_selector_out Mask returned specifying which locking criteria were
read.
60 Sentinel LM Programmer’s Reference Manual

Client Configuration Functions
Description Sets the values of the machineID struct for the current host. The input
machineID struct should first be initialized by calling VLSinitMachineID.
Then, calling this function will attempt to read only those items indicated by
the lock_selector_in. If lock_selector_out is not NULL, *lock_selector_out will be
set to a bit mask specifying which items were actually read. To try and
obtain all possible machineID struct items, set lock_selector_in to
VLS_LOCK_ALL. VLSgetMachineID allows you to use an Ethernet address
as a locking criterion for UNIX computers.

Returns The status code, VLScg_SUCCESS, is always returned. For a complete list of
the error codes, see Appendix C, “Sentinel LM Error and Result Codes,” on
page 397.

VLSmachineIDtoLockCode

Syntax LS_STATUS_CODE VLSmachineIDtoLockCode(
VLSmachineID *machineID,
unsigned long lock_selector,
unsigned long *lockCode);

Description This function computes the locking code from the machineID based on the
lock selector. Note that every bit in lock_selector is significant. For instance, if
you have a machineID that has valid information only for the IP address
(lock selector is 0x2), then you should pass 0x2 into the lock_selector
parameter. If you pass in any other lock_selector value, a different lockCode
will result.

Client Server Static Library DLL

Argument Description

machineID Machine ID used to generate lock code.

lock_selector Bit mask defining the different lock criteria to retrieve

lockCode Lock code string generated from lock selector. lockCode
is an OUT parameter.
Sentinel LM Programmer’s Reference Manual 61

Chapter 3 – Sentinel LM Client API
Returns The status code, LS_SUCCESS, is returned if successful and if lock_selector is
zero. For a complete list of the error codes, see Appendix C, “Sentinel LM
Error and Result Codes,” on page 397.

VLSgetServerNameFromHandle

Syntax LS_STATUS_CODE VLSgetServerNameFromHandle(
LS_HANDLE handle_id,
char *outBuf,
int outBufSz);

Description This function retrieves the name of license server based on handle_id. A valid
handle_id is always obtained as a product of a successful license request. This
handle is associated with the license server that was contacted for the
license request. VLSgetServerNameFromHandle can be used to retrieve the
name of the license server which granted the license.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Client Server Static Library DLL

Argument Description

handle_id The handle returned by LSRequest or VLSrequestExt

outBuf (OUT) User allocated buffer to receive license server name

outBufSz Size of buffer in bytes

VLSgetServerNameFromHandle Error Codes

Code Description

VLS_CALLING_ERROR outBuf is NULL.

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL outBuf is smaller than license server’s name that
will be returned.
62 Sentinel LM Programmer’s Reference Manual

Client Configuration Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSinitServerList

Syntax LS_STATUS_CODE VLSinitServerList(
char *serverList,
int optionFlag);

Description This function initializes a list of default license servers to contact whenever a
call is made to get a license. serverList should be in the same format as the
last parameter of the VLSdiscover call, and have the same syntax. See
“VLSdiscover” on page 107 for description of optionFlag. This should be
called prior to calling LSRequest or VLSqueuedRequest.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Client Server Static Library DLL

Argument Description

serverList Caller allocated array of license server names, or IP or IPX
addresses.

optionFlag A three-bit flag used to determine how license servers are
found.

VLSinitServerList Error Codes

Error Code Description

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.
Sentinel LM Programmer’s Reference Manual 63

Chapter 3 – Sentinel LM Client API
VLSgetServerList

Syntax LS_STATUS_CODE VLSgetServerList(
char *outBuf,
int outBufSz);

Description This function returns the default license server list that was set previously
through a call to VLSinitServerList. If the default license server list has not
been set, an empty string is returned in outBuf.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Client Server Static Library DLL

Argument Description

outBuf (OUT) User allocated buffer to receive license server name

outBufSz Size of buffer in bytes

VLSgetServerList Error Codes

Error Code Description

VLS_CALLING_ERROR outBuf is NULL.

LS_BUFFER_TOO_SMALL outBuf is smaller than license server’s name that
will be returned.

VLS_NO_SERVER_FILE License server does not have a list file. License
server has not been set and is unable to determine
which license server to use.
64 Sentinel LM Programmer’s Reference Manual

Client Configuration Functions
VLSinitServerInfo

Syntax LS_STATUS_CODE VLSinitServerInfo(
VLSserverInfo *serverInfo);

Description Initializes the serverInfo data structure to its default values.

Note: This function must be called before calling VLSrequestExt or VLSreleaseExt.

Returns The status code LS_SUCCESS is always returned.

VLSsetHostIdFunc

Sets the host ID function.

Syntax LS_STATUS_CODE VLSsetHostIdFunc (long
(*myGetHostIdFunc) ());

Description This function sets the host ID function for the client library to be the
function pointed to by myGetHostIdFunc. This enables the customization of
host ID locking.

Client Server Static Library DLL

Argument Description

serverInfo User allocated buffer that will contain initialized
VLSserverInfo.

Client Server Static Library DLL

Argument Description

myGetHostIdFunc The address of the custom host ID function. In
Windows this must be the address returned by
MakeProcInst.
Sentinel LM Programmer’s Reference Manual 65

Chapter 3 – Sentinel LM Client API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSsetBroadcastInterval

Sets the broadcast interval.

Syntax LS_STATUS_CODE VLSsetBroadcastInterval(
long interval);

Description If a licensed application performs a broadcast to establish the presence of a
license server on the subnet, it makes two broadcast attempts, where the
length of the second broadcast attempt is slightly longer than the first.

VLSsetBroadcastInterval sets the total length of both attempts to be interval
seconds. The default value of interval is 9 seconds.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSsetHostIdFunc Error Codes

Error Code Description

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

Client Server Static Library DLL

Argument Description

interval The total time interval for broadcast (in seconds).

VLSsetBroadcastInterval Error Codes

Error Code Description

LS_NORESOURCES An error occurred in attempting to allocate memory
needed by function.
66 Sentinel LM Programmer’s Reference Manual

Client Configuration Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetBroadcastInterval

Retrieves the broadcast interval.

Syntax long VLSgetBroadcastInterval (void);

Description If a licensed application performs a broadcast to establish the presence of a
license server on the subnet, it makes two broadcast attempts, where the
length of the second broadcast attempt is slightly longer than the first.

Returns VLSgetBroadcastInterval returns the total length of broadcast attempts.

VLSsetTimeoutInterval

Sets the timeout interval.

Syntax LS_STATUS_CODE VLSsetTimeoutInterval(
long interval);

Description This call sets the time-out interval for all direct application/license server
communication to interval seconds. When a licensed application sends a
request to a license server and the license server does not respond, it re-
sends the message a few times. Each time, the length of the timeout interval
is slightly longer than the previous. VLSsetTimeoutInterval sets the total
length of a set of attempts to be interval seconds. The default value of interval
is 30 seconds. Note that these timeouts are different from the broadcast
timeouts.

Client Server Static Library DLL

Client Server Static Library DLL

Argument Description

interval The timeout period in seconds.
Sentinel LM Programmer’s Reference Manual 67

Chapter 3 – Sentinel LM Client API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetTimeoutInterval

Retrieves the timeout interval.

Syntax long VLSgetTimeoutInterval ();

Description When a licensed application sends a request to a license server and the
license server does not respond, it re-sends the message a few times. Each
time, the length of the timeout interval is slightly longer than the previous
one.

Returns This call retrieves the time-out interval for all direct application/license
server communication.

VLSsetTimeoutInterval Error Codes

Error Code Description

LS_NORESOURCES An error occurred in attempting to allocate memory
needed by function.

Client Server Static Library DLL
68 Sentinel LM Programmer’s Reference Manual

Client Configuration Functions
VLSsetHoldTime

Sets the hold time for licenses.

Syntax LS_STATUS_CODE VLSsetHoldTime(
char *featureName,
char *version,
int timeInSecs);

Description This function sets the hold time of licenses issued to the feature to timeInSecs
seconds. This function call will only be effective if the license for the feature
specifies that the hold time should be set by the application. This function
call must be made before the first LSRequest or VLSqueuedRequest call for it
to be applicable. Once a license is requested using LSRequest, the hold time
is set for that application, and VLSsetHoldTime will not change it.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Client Server Static Library DLL

Argument Description

featureName Name of the feature.

version Version of the feature.

timeInSecs Time in seconds. Default: 15 seconds.

VLSsetHoldTime Error Codes

Error Code Description

VLS_APP_UNNAMED • featureName is NULL
• version is NULL

Both feature name and version cannot be NULL at
the same time.

LS_NORESOURCES An error occurred in attempting to allocate memory
needed by function.

VLS_CALLING_ERROR An error occurred in the use of an internal buffer.
Sentinel LM Programmer’s Reference Manual 69

Chapter 3 – Sentinel LM Client API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSsetSharedId/ VLSsetTeamId

Redefines the functions called to get the relevant sharing parameter of the
client. For network use only.

Syntax In case of normal license:

LS_STATUS_CODE VLSsetSharedId(
int sharedId,
unsigned long (*mySharedIdFunc) (char *));

In case of capacity license:

LS_STATUS_CODE VLSsetTeamId(
int teamId,
unsigned long (*mySharedIdFunc) (char *));

Description VLSsetSharedId/VLSsetTeamId must be used to register a customized
sharedID/teamID function with the Sentinel LM client library. The value of
the sharedID must be passed back by mySharedIdFunc through the character
buffer. All sharedID character buffers will be truncated to 32 bytes. For
instance, a customized function which returns the host name can be used
by the client library instead of the built-in function to determine eligibility
for sharing a license.

Client Server Static Library DLL

Argument Description

sharedId/ teamId Must be one of the following values:
• VLS_CLIENT_HOST_NAME_ID
• VLS_USER_NAME_ID
• VLS_X_DISPLAY_NAME_ID
• VLS_VENDOR_SHARED_ID

mySharedIdFunc Pointer to a function that will return the sharedID value.
70 Sentinel LM Programmer’s Reference Manual

Client Configuration Functions
VLSsetSharedId should be used in case of normal license and
VLSsetTeamId should be used in case of capacity license.

Note: If the host name or user name are changed using this function, the change
will also be reflected in the usage file written by the license server.

One of the many flexibility provided by LM licensing is the sharing of same
license keys, based on the following criteria:

1. User-name based sharing

2. Hostname based sharing

3. X-display based sharing

4. Application-defined sharing

This model is often used by software publishers who do not want to count
every instance of a running application. They may allow multiple instances
of a running application to share a single license token/key based on a
common user name, host name or custom sharing criteria.

When any of the sharing-options are enabled in a license, the license server
checks if the new request made by a client is coming from the same User/
Host/X-display or not. If it is so, then it checks with the sharing-limit per
license-key and then issues the same key to the new user.

Internally, VLSrequestExt function, while sending a License Issue Request
Message to the license server, passes on the information regarding its user-
name, client-hostname, x-displayname to the license server. This
information is kept by the license server in its internal tables for future use.
The next time a license is requested for the same Feature, the saved
information is used to determine whether this new request is originating
from the same user/host/x-display.

By default, Sentinel LM has default functions to get these values (i.e. user
name, x-display, etc.). To use your own functions to retrieve these values,
use the VLSsetSharedId function to override the default functions.
Sentinel LM Programmer’s Reference Manual 71

Chapter 3 – Sentinel LM Client API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSsetSharedIdValue/ VLSsetTeamIdValue

Uses the value passed in by the caller as the shared ID for licensing purposes.
For network use only.

Syntax In case of normal license:

LS_STATUS_CODE VLSsetSharedIdValue(
int sharedId,
char *sharedIdValue);

In case of capacity license:

LS_STATUS_CODE VLSsetTeamIdValue(
int teamId,
char *teamIdValue);

VLSsetSharedId/ VLSsetTeamId Error Codes

Code Description

VLS_CALLING_ERROR mySharedIdFunc is NULL.

VLS_UNKNOWN_SHARED_ID Invalid sharedId/ teamId; is either negative
or exceeds maximum value.

Client Server Static Library DLL
72 Sentinel LM Programmer’s Reference Manual

Client Configuration Functions
Description This function goes along with VLSsetSharedId/ VLSsetTeamId and can be
used to register a customized sharedId/ teamId value with the Sentinel LM
client library. You can explicitly provide the sharedId/ teamId itself using this
function. The value of the sharedId/ teamId must be passed through the
character buffer. All sharedId/ teamId character buffers will be truncated to
32 bytes. If you call both VLSsetSharedId and VLSsetSharedIdValue/
VLSsetTeamId and VLSsetTeamIdValue, VLSsetSharedId/ VLSsetTeamId
has priority and the value set by VLSsetSharedIdValue/ VLSsetTeamIdValue
will be ignored.

The same concept applies to VLSsetSharedIdValue/ VLSsetTeamIdValue
function as VLSsetSharedId/ VLSsetTeamId function. The difference
between VLSsetSharedId/ VLSsetTeamId and VLSsetSharedIdValue/
VLSsetTeamIdValue lies in the fact that VLSsetSharedId/ VLSsetTeamId
function will make the VLSrequestExt internally send different IDs as
returned by the Developer-Defined functions, whereas
VLSsetSharedIdValue/ VLSsetTeamIdValue will make the VLSrequestExt
send the same ID irrespective of the fact “who is running the client,” “from
where the client is being run,” and so on.

The first priority is given to the developer defined functions as set by
VLSsetSharedId/ VLSsetTeamId. If no developer defined function is found
then the priority is passed to the SharedIdValue as set by
VLSsetSharedIdValue/ VLSsetTeamIdValue function. If neither the
developer defined function nor the developer defined SharedIdValue is
found, the default functions are used.

Argument Description

sharedId/ teamId Must be one of the following values:
• VLS_CLIENT_HOST_NAME_ID
• VLS_USER_NAME_ID
• VLS_X_DISPLAY_NAME_ID
• VLS_VENDOR_SHARED_ID

sharedIdValue A character buffer which can contain up to 32 characters.
Sentinel LM Programmer’s Reference Manual 73

Chapter 3 – Sentinel LM Client API
Note: VLSsetSharedIdValue should be used in case of normal license and
VLSsetTeamIdValue should be used in case of capacity license.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Local vs. Remote Renewal of License Tokens

The license token (also known as a key) issued by the license server to a
client upon request has to be renewed by calling LSUpdate within the period
of the license lifetime, or if you are using auto-timers, this will be done
automatically for you. The APIs related to enabling/disabling of a local
renewal basically changes the time during the lifetime of the license at
which an update is sent to the license server. Unless updates are carried out
by setting auto-timers, updating the license on the license server has to be
carried out manually by the client before the expiration of the license
lifetime. For more information on this, see “LSUpdate” on page 35.

The following function calls relate to license renewal:

VLSsetSharedIdValue Error Codes

Error Code Description

VLS_CALLING_ERROR An error occurred in the use of an internal buffer.

License Renewal Functions

Function Description

VLSdisableLocalRenewal Disables local license renewal.

VLSenableLocalRenewal Resets local license renewal.

VLSisLocalRenewalDisabled Informs you whether or not local updates are
enabled.

VLSgetRenewalStatus Returns renewal status.
74 Sentinel LM Programmer’s Reference Manual

Local vs. Remote Renewal of License Tokens
VLSdisableLocalRenewal

Forces all future license renewals to go to the license server.

Syntax LS_STATUS_CODE VLSdisableLocalRenewal (void);

This function has no arguments.

Description This disables the local license renewal mechanism. Under local renewal,
calls to LSUpdate do not result in a message being sent to the license server
until the remote renewal time is reached. On executing this function call, all
future license renewals made using LSUpdate for all handles in this process,
will go to the license server for renewal.

Returns The status code LS_SUCCESS is always returned. For a complete list of the
error codes, see Appendix C, “Sentinel LM Error and Result Codes,” on page
397.

See Also ■ “LSUpdate” on page 35

■ “VLSenableLocalRenewal” on page 76

VLSsetRemoteRenewalTime Sets the remote renewal period.

VLSdisableAutoTimer Disables automatic renewal of one feature.

Client Server Static Library DLL

License Renewal Functions (Continued)

Function Description
Sentinel LM Programmer’s Reference Manual 75

Chapter 3 – Sentinel LM Client API
VLSenableLocalRenewal

Resets the license renewal mechanism to the default.

Syntax LS_STATUS_CODE VLSenableLocalRenewal (void);

This function has no arguments.

Description License server will only be contacted when a license is close to its key life-
time. Resets the license renewal for all future license renewals made using
LSUpdate for all handles in this process.

Returns The status code LS_SUCCESS is always returned. For a complete list of the
error codes, see Appendix C, “Sentinel LM Error and Result Codes,” on page
397.

Updates until remote renewal time will not go to the license server. Updates
will be returned locally. Only updates sent after the remote renewal time will
be sent to the license server.

See Also ■ “LSUpdate” on page 35

■ “VLSdisableLocalRenewal” on page 75

VLSisLocalRenewalDisabled

Informs you whether or not local updates are enabled.

Syntax VLS_LOC_UPD_STAT VLSisLocalRenewalDisabled (void);

This function has no arguments.

Client Server Static Library DLL

Client Server Static Library DLL
76 Sentinel LM Programmer’s Reference Manual

Local vs. Remote Renewal of License Tokens
Returns Returns the following error codes:

VLSgetRenewalStatus

Retrieves license renewal status.

Syntax LS_STATUS_CODE VLSgetRenewalStatus (void);

This function has no arguments.

Description Returns the renewal status of the last successful license renewal made using
LSUpdate. If the last operation that successfully renewed a license involved
contacting the license server, this function returns VLS_REMOTE_UPDATE.
If the last operation that successfully renewed a license did not involve
contacting the license server (was done locally), this function returns the
value VLS_LOCAL_UPDATE. If an update has not occurred, it returns
VLS_NO_UPDATES_SO_FAR.

Returns Returns the following status codes:

VLSisLocalRenewalDisabled Error Codes

Error Code Description

VLS_LOCAL_UPD_ENABLE Local renewal is enabled. This is the initial
status and the status after
VLSenableLocalRenewal is called.

VLS_LOCAL_UPD_DISABLE Local renewal is disabled. This is the status
after VLSdisableLocalRenewal is called.

Client Server Static Library DLL

VLSgetRenewalStatus Error Codes

Error Code Description

VLS_NO_LICENSE_GIVEN Generic error indicating that license was
not updated.

LS_LICENSETERMINATED Cannot update the license because the
license has already expired.
Sentinel LM Programmer’s Reference Manual 77

Chapter 3 – Sentinel LM Client API
VLS_NO_SUCH_FEATURE License server does not have license that
matches requested feature, version and
capacity.

LS_NOLICENSESAVAILABLE All licenses in use.

LS_LICENSE_EXPIRED License has expired.

VLS_TRIAL_LIC_EXHAUSTED Trial license expired or trial license usage
exhausted.

VLS_FINGERPRINT_MISMATCH Client-locked; locking criteria does not
match.

VLS_APP_NODE_LOCKED Feature is node locked, but the update
request was issued from an unauthorized
machine.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

VLS_VENDORIDMISMATCH The vendor identification of requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

VLS_INVALID_DOMAIN The domain of the license server is
different from that of client.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_BAD_SERVER_MESSAGE Message returned by license server could
not be understood.

VLSgetRenewalStatus Error Codes (Continued)

Error Code Description
78 Sentinel LM Programmer’s Reference Manual

Local vs. Remote Renewal of License Tokens
See Also “LSUpdate” on page 35.

LS_NO_NETWORK Generic error indicating that the network
is unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to
allocate memory needed by function.

VLS_ELM_LIC_NOT_ENABLE The license was converted using the license
conversion utility (from a 5.x license), but
the DLT process is not running.

VLS_NO_UPDATES_SO_FAR No updates have been made. Specifies the
initial value.

VLS_LOCAL_UPDATE During the most recent update, the license
was valid and did not need to be renewed.

VLS_REMOTE_UPDATE During the most recent update, the license
was invalid and required update from the
license server.

VLSgetRenewalStatus Error Codes (Continued)

Error Code Description
Sentinel LM Programmer’s Reference Manual 79

Chapter 3 – Sentinel LM Client API
VLSsetRemoteRenewalTime

Sets the remote renewal time period.

Syntax LS_STATUS_CODE VLSsetRemoteRenewalTime(
char *featureName,
char *version,
int timeInSecs);

Description Sets the remote renewal period of licenses issued to the feature to timeInSecs
seconds. This function call must be made before the first LSRequest call for it
to be applicable. Once a license is requested using LSRequest, the remote
renewal time is set for that application, and VLSsetRemoteRenewalTime will
not change it.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Client Server Static Library DLL

Argument Description

featureName Name of the feature.

version Version of the feature.

timeInSecs Time in seconds. Default time is 15 seconds.

VLSsetRemoteRenewalTime Error Codes

Error Code Description

VLS_APP_UNNAMED • featureName is NULL
• version is NULL

Both feature name and version cannot be NULL
at the same time.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_CALLING ERROR An error occurred in the use of an internal
buffer.
80 Sentinel LM Programmer’s Reference Manual

Local vs. Remote Renewal of License Tokens
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

See Also ■ “LSRequest” on page 31

■ “LSUpdate” on page 35

VLSdisableAutoTimer

Syntax LS_STATUS_CODE VLSdisableAutoTimer(
LS_HANDLE lshandle,
int state);

Description Using the handle returned from requesting a license, a call to this function
can be used to disable automatic renewal of one feature. Calling with an
argument of zero handle disables auto renewal of all features.

Note: On UNIX, call VLSdisableAutoTimer before using sleep or SIGALRM, or
there could be a potential conflict with the timer signal.
On Win32, call VLSdisableAutoTimer if thread has no message loop since
the message loop is used to process the timer. If you disable the automatic
timer, you must ensure that the license key is renewed periodically (before
it expires) by calling LSUpdate.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Client Server Static Library DLL

Argument Description

lshandle The handle returned by LSRequest or VLSrequestExt

state VLS_ON or VLS_OFF

VLSdisableAutoTimer Error Codes

Error Code Description

VLS_CALLING_ERROR Invalid state. Needs to be either VLS_ON or VLS_OFF

LS_BADHANDLE Invalid handle.
Sentinel LM Programmer’s Reference Manual 81

Chapter 3 – Sentinel LM Client API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Client Query Functions

There are three functions that return information about a client feature:

Query functions provide a snapshot of the current status of the license
server and the features it licenses. Typically, users at a site are interested in
information about how many concurrent copies (or licenses) a feature is
licensed for, which users are currently using a particular feature, how soon
a licensing agreement will expire, and so on. These functions can be used
within application software, or to build stand-alone query utilities. All
functions return the status code LS_SUCCESS on success or an appropriate
error code. For a listing of error values, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

If a license server host name is not established, the client query function will
attempt to locate a license server. Information about any instance of
application authorized by the Sentinel LM license server is returned in the
following structure:

Client Query Functions

Function Description

VLSgetClientInfo Returns information about a client currently
licensed by the license server.

VLSgetHandleInfo Returns information about a client given a handle.

VLSgetLicInUseFrom
Handle

Returns the number of licenses used for the feature
name used to obtain a given handle.
82 Sentinel LM Programmer’s Reference Manual

Client Query Functions
Syntax typedef struct client_info_struct {
char user_name[VLS_MAXLEN];
unsigned long host_id;
char group[VLS_MAXLEN];
long start_time;
long hold_time;
long end_time;
long key_id;
char host_name[VLS_MAXLEN];
char x_display_name[VLS_MAXLEN];
char shared_id_name[VLS_MAXLEN];
int num_units;
int q_wait_time;
int is_holding;
int is_sharing;
int is_commuted;
long structSz;
unsigned long team_capacity;
unsigned long total_resv_team_capacity;
unsigned long reserved_team_capacity_in_use;
unsigned long unreserved_team_capacity_in_use;
unsigned long user_capacity_from_reserved;
unsigned long user_capacity_from_unreserved;
int total_team_tokens_resv;
int reserved_team_tokens_in_use;
int unreserved_team_tokens_in_use;
} VLSclientInfo;

Member Description

user_name The login name of the user using the application, where
MAXLEN is set to 64 characters. This information can be
changed using the VLSsetSharedId API call.

host_id The host ID of the computer on which the user is working.
This can be changed using the VLSsetHostIdFunc call.

group Name of the reserved group to which the user belongs,
where MAXLEN is set to 64 characters. If the user does not
belong to an explicitly named group, DefaultGrp is returned.
Sentinel LM Programmer’s Reference Manual 83

Chapter 3 – Sentinel LM Client API
start_time The time at which the current license code was issued by the
license server.

hold_time Specifies the hold time, in seconds, if any.

end_time The time at which the user’s current license will expire if not
renewed.

key_id The internal ID of the license currently issued to the user’s
application. After starting up, the license server issues
licenses with unique IDs until it is restarted.

host_name Name of the host/computer where the user is running the
application, where MAXLEN is set to 64 characters. This
information can be changed using the VLSsetSharedId API
call.

x_display_
name

Name of the X display where the user is displaying the
application, where MAXLEN is set to 64 characters. This
information can be changed using the VLSsetSharedId API
call.

shared_id_
name

A special vendor-defined ID that can be used for license
sharing decisions. It always has the fixed value, default-
sharing-ID, unless it is changed by registering a custom
function using the VLSsetSharedId API call. If you plan to use
this ID, you should register your own function from your
application, and choose Application-defined sharing while
running the code generator. The maximum length of the
string is set to 64 characters.

num_units Number of units consumed by the client so far.

q_wait_time Unused.

is_holding Has the value, VLS_TRUE, if the user’s current license is being
held after its expiration. Otherwise, the value is VLS_FALSE.

is_sharing Total number of clients sharing this particular license,
including the current client being queried. If sharing is
disabled, is_sharing will be 0.

is_commuted Total number of clients that have “checked out” a license
from the network.

structSz Size of VLSclientInfo structure.

Member Description
84 Sentinel LM Programmer’s Reference Manual

Client Query Functions
VLSgetClientInfo

Returns information about a client feature.

Syntax LS_STATUS_CODE VLSgetClientInfo(
char *featureName,
char *version,
int index,
char *unused1,

team_capacity Total capacity of the team.

total_resv_tea
m_capacity

 Total capacity reserved for the team.

reserved_team
_capacity_in_
use

Capacity given to clients from reserved capacity.

ureserved_tea
m_capacity_in
_use

Capacity given to clients from unreserved capacity.

user_capacity_
from_reserved

Capacity given to users from reserved capacity.

user_capacity_
from_unreserv
ed

Capacity given to users from unreserved capacity.

total_team_to
kens_resv

Total reserved units.

reserved_team
_tokens_in_
use

Units given to teams from reserved pool.

unreserved_te
am_tokens_in_
use

Units given to teams from unreserved pool.

Client Server Static Library DLL

Member Description
Sentinel LM Programmer’s Reference Manual 85

Chapter 3 – Sentinel LM Client API
VLSclientInfo *clientInfo);

Description After this call, clientInfo contains information about all clients’ features.
Since it is possible for multiple clients of a particular feature to be active on
the network, index is used to retrieve information about a specific client. The
suggested use of this function is in a loop, where the first call is made with
index 0 which retrieves information about the first client. Subsequent calls,
when made with 1, 2, 3, and so on, will retrieve information about other
clients of that feature type. So long as the index is valid, the function returns
the success code, LS_SUCCESS. Otherwise, it returns the Sentinel LM status
code, VLS_NO_MORE_CLIENTS. Memory for clientInfo should be allocated
before making the call.

Argument Description

featureName Name of the feature.

version Version of the feature.

index Used to specify a particular client.

unused1 Use NULL as the value.

clientInfo (out) The structure in which information will be returned.
Space allocated by caller.
86 Sentinel LM Programmer’s Reference Manual

Client Query Functions
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSgetClientInfo Error Codes

Error Code Description

VLS_APP_UNNAMED • featureName is NULL
• version is NULL

Both feature name and version cannot be
NULL at the same time.

VLS_CALLING_ERROR • clientInfo parameter is NULL
• index is negative.
• Attempted to use stand-alone mode with

network-only library, or network mode
with stand-alone library.

VLS_NO_MORE_CLIENTS Finished retrieving client information for all
clients.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature, version and
capacity.

VLS_MULTIPLE_VENDORID_
FOUND

The license server has licenses for the same
feature and version from multiple vendors. It
is ambiguous which feature is requested.

VLS_NO_SERVER_UNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has timed
out.

VLS_HOST_UNKNOWN Invalid hostName was specified.
Sentinel LM Programmer’s Reference Manual 87

Chapter 3 – Sentinel LM Client API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetHandleInfo

Returns information about a client feature.

Syntax LS_STATUS_CODE VLSgetHandleInfo(
LS_HANDLE lshandle,
VLSclientInfo *clientInfo);

Description This function also retrieves client information, except that lshandle replaces
the arguments (featureName, version, and index) used in VLSgetClientInfo.

VLS_NO_SERVER_FILE No license server has been set and unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

Client Server Static Library DLL

VLSgetClientInfo Error Codes

Error Code Description

Argument Description

lshandle The handle returned by LSRequest or VLSrequestExt

clientInfo (out) The structure in which information will be returned.
Space allocated by caller.
88 Sentinel LM Programmer’s Reference Manual

Client Query Functions
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetLicInUseFromHandle

Returns the total number of licenses issued by the license server for the fea-
ture name and version used to obtain this handle.

Syntax LS_STATUS_CODE VLSgetLicInUseFromHandle(
LS_HANDLE lshandle,
int *totalKeysIssued);

Description Given a valid handle returned by an LSRequest call or its variants, it returns
the total number of licenses issued by the license server for the feature name
and version used to obtain this handle. The information in the handle is not
updated subsequently. For more information, use VLSgetFeatureInfo.

VLSgetHandleInfo Error Codes

Error Code Description

VLS_BAD_HANDLE Invalid handle. Handle may have already been
released and destroyed from previous license
operations or too many handles have already been
allocated.

Client Server Static Library DLL

Argument Description

lshandle The handle returned by any Request API call.

totalKeysIssued The number of licenses issued by the license server.
Space should be allocated by the caller.
Sentinel LM Programmer’s Reference Manual 89

Chapter 3 – Sentinel LM Client API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

See Also “VLSgetFeatureInfo” on page 96.

Feature Query Functions

The following table summarizes the feature query functions:

VLSgetLicInUseFromHandle Error Codes

Error Code Description

LS_BADHANDLE Invalid handle. Handle has already been
released and destroyed from previous license
versions or too many handles have been
allocated.

LS_BUFFER_TOO_SMALL in_use_ p parameter is NULL.

Feature Query Functions

Function Description

VLSgetFeatureInfo Retrieves feature licensing information from the
license server.

VLSgetVersions Retrieves licensed version information for a
feature.

VLSgetFeatureFrom
Handle

Returns the feature name corresponding to the
handle.
90 Sentinel LM Programmer’s Reference Manual

Feature Query Functions
Information about specific features licensed by the Sentinel LM license
server is returned in the following structure.

Syntax typedef struct feature_info_struct {
 long structSz
 char feature_name[VLS_MAXFEALEN];
 char version[VLS_MAXFEALEN];
 int lic_type;
 int trial_days_count;
 long birth_day
 long death_day;
 int num_licenses;
 int total_resv;
 int lic_from_resv;
 int qlic_from_resv;
 int lic_from_free_pool;
 int qlic_from_free_pool
 int is_node_locked;
 int concurrency;
 int sharing_crit;
 int locking_crit;
 int holding_crit;

VLSgetVersionFrom
Handle

Returns the version corresponding to the handle.

VLSgetTimeDriftFrom
Handle

Returns the difference in seconds between the
estimated current time on the license server and
the estimated time on the client.

VLSgetFeatureTime
LeftFromHandle

Returns the difference in seconds between the
estimated current time on the license server and
the estimated feature expiration time on the
license server.

VLSgetKeyTimeLeft
FromHandle

Returns the difference in seconds between the
estimated current time on the license server and
the estimated license expiration time on the
license server

Feature Query Functions

Function Description
Sentinel LM Programmer’s Reference Manual 91

Chapter 3 – Sentinel LM Client API
 int num_subnets;
 char site_license_info [VLS_SITEINFOLEN];
 long hold_time;
 int meter_value;
 char vendor_info [VLS_VENINFOLEN + 1];
 char cl_lock_info[VLS_MAXCLLOCKLEN];
 long key_life_time;
 int sharing_limit;
 int soft_num_licenses;
 int is_standalone;
 int check_time_tamper;
 int is_additive;
 int isRedundant;
 int majority_rule;
 int num_servers;
 int isCommuter;
 int log_encrypt_level;
 int elan_key_flag;
 long conversion_time;
 long avg_queue_time;
 long queue_length;
 int tot_lic_reqd;
 int isELMEnabled ;
 int commuted_keys;
 int commuter_keys_left;
 char server_locking_info[VLS_MAXSRVLOCKLEN];
 int capacity_flag;
 unsigned long capacity;
unsigned long total_resv_capacity;
unsigned long in_use_capacity_from_reserved;
unsigned long in_use_capacity_from_unreserved;
} VLSfeatureInfo;

Member Description

structSz Size of VLSfeatureInfo structure.

feature_name Name of the feature whose information is retrieved.
Maximum 24 characters.

version Feature version. Maxmimum 11 characters.
92 Sentinel LM Programmer’s Reference Manual

Feature Query Functions
lic_type Type of license either trial or normal.

trial_days_count Number of trial days.

birth_day Day of the license start date.

death_day The time when the feature expires. The constant,
VLS_NO_EXPIRATION, is returned if the license does not
have any expiration date.

num_licenses The total number of licenses the license server is
authorized to issue.

total_resv Number of licenses reserved using group reservations.

lic_from_resv Number of reserved licenses issued to clients.

lic_from_free_pool Number of unreserved licenses issued to clients.

qlic_from_free_pool Number of unreserved licenses issued to queued clients.

is_node_locked Depending on the locking scheme of the feature, this
returns one of the following constants:
• VLS_NODE_LOCKED (client locked to license server)
• VLS_CLIENT_NODE_LOCKED (client locked)
• VLS_FLOATING (license server locked)
• VLS_DEMO_MODE (unlocked)

concurrency Unused.

sharing_crit Returns the license sharing criteria, which can be one of
the following constants:
• VLS_NO_SHARING
• VLS_USER_NAME_ID
• VLS_CLIENT_HOST_NAME_ID
• VLS_X_DISPLAY_NAME_ID
• VLS_VENDOR_SHARED_ID

Member Description
Sentinel LM Programmer’s Reference Manual 93

Chapter 3 – Sentinel LM Client API
locking_crit The license server locking criteria, which can be one of
the following constants:
• VLS_LOCK_ID_PROM
• VLS_LOCK_IP_ADDR
• VLS_LOCK_DISK_ID
• VLS_LOCK_HOSTNAME
• VLS_LOCK_ETHERNET
• VLS_LOCK_NW_IPX
• VLS_LOCK_NW_SERIAL
• VLS_LOCK_PORTABLE_SERV
• VLS_LOCK_CUSTOM
• VLS_LOCK_CPU

holding_crit The license holding criteria, which can be one of the
following constants:
• VLS_HOLD_NONE (no held licenses).
• VLS_HOLD_VENDOR (the client specifies the hold

time through the function, VLSsetHoldTime).
• VLS_HOLD_CODE (the license code specifies the hold

time).

hold_time The hold time specified for licenses issued for this
feature.

num_subnets The number of subnet specifications provided for the
site.

site_license_info A space-separated list of subnet wildcard specifications.

meter_value Unused.

vendor_info The vendor-defined information string. The maximum
length of vendor_info string can be 395 characters.

cl_lock_info Locking information about clients in a space-separated
string of host IDs and/or IP addresses.
If licenses-per-node restrictions have been specified, they
are also returned in parentheses with each host ID/IP
address. For instance, cl_lock_info could be:
0x8ef38b91(20#) 0xa4c7188d 0x51f8c94a(10#).

key_life_time The license lifetime for this feature (in seconds).

Member Description
94 Sentinel LM Programmer’s Reference Manual

Feature Query Functions
sharing_limit The limit on how many copies of the licensed application
can share the same license.

soft_num_licenses The soft limit (for alerts) on the number of concurrent
users of this feature.

is_standalone Returns VLS_TRUE if this is a stand-alone license or
VLS_FALSE if this is a network license.

check_time_tamper Returns VLS_TRUE if this feature is time tamper proof or
VLS_FALSE if not time tamper proof.

is_additive Returns VLS_TRUE if this is an additive license or
VLS_FALSE if this is an exclusive license.

isRedundant Validates if the license is actually redundant.

majority_rule Checks whether majority rule is on or off.

num_servers Number of redundant license servers.

isCommuter Commuter licenses.

log_encrypt_level Encryption level in the network license for the license
server’s usage log file.

avg_queue_time Average time the past or present clients are in the
queue. (Not implemented.)

queue_length Length of the queue.

tot_lic_reqd Required number of licenses for all queued clients.

commuted_keys Number of commuter keys that have been checked out.

commuter_keys_left Number of computer keys left.

server_locking_info Stores the server locking information.

capacity_flag The capacity flag can be one of the following constants:
• VLScg_CAPACITY_NONE - for no capacity
• VLScg_CAPACITY_NON_POOLED - for non-pooled

capacity
• VLScg_CAPACITY_POOLED - for pooled capacity

capacity Total capacity of the license.

total_resv_capacity Total reserved capacity.

Member Description
Sentinel LM Programmer’s Reference Manual 95

Chapter 3 – Sentinel LM Client API
VLSgetFeatureInfo

Retrieves licensing information about a feature using the structure,
feature_info.

Syntax LS_STATUS_CODE VLSgetFeatureInfo(
char *name,
char *version,
int index,
char *unused1,
VLSfeatureInfo *featureInfo);

Description Returns information on all features. You will need to initialize the structSz
field of the VLSfeatureInfo structure being passed to this call before actually
calling it.

If name is not NULL, information about the feature indicated by name and
version is returned.

in_use_capacity_
from_reserved

Capacity given to clients from reserved capacity.

in_use_capacity_
from_unreserved

Capacity given to clients from unreserved capacity.

Client Server Static Library DLL

Member Description

Argument Description

name Name of the feature.

version Version of the feature.

index Used to specify a particular client.

unused1 Use NULL as the value.

featureInfo (out) The structure in which information will be returned.
Space must be allocated by caller.
96 Sentinel LM Programmer’s Reference Manual

Feature Query Functions
If information about all licensed features is desired, name should be NULL,
and index should be used in a loop as described for the function call,
VLSgetClientInfo. Refer to the source code of the lsmon.c utility for
additional information.

VLSgetFeatureInfo returns the status code, VLS_NO_MORE_FEATURES,
when it runs out of features to describe. If an error occurs, for example, the
feature is unknown to the Sentinel LM license server, an appropriate error
code is returned. For a complete list of error codes, see Appendix C, “Sentinel
LM Error and Result Codes,” on page 397.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSgetFeatureInfo Error Codes

Error Code Description

VLS_CALLING_ERROR • featureInfo is NULL
• index is negative
• Attempted to use stand-alone mode with net-

work only library, or network mode with
stand-alone library.

VLS_APP_UNNAMED version is NULL when name is non_NULL.

VLS_NO_MORE_FEATURES Finished retrieving feature information for all
features on license server.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available
for processing license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed
out.

VLS_HOST_UNKNOWN Invalid hostName was specified.
Sentinel LM Programmer’s Reference Manual 97

Chapter 3 – Sentinel LM Client API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetVersions

Returns the list of versions licensed by the license server for a given feature.

Syntax LS_STATUS_CODE VLSgetVersions(
char *featureName,
int bufferSize,
char *versionList,
char *unused1);

Description This function returns a list of versions separated by spaces in the array,
versionList. Space for this array must be allocated prior to the call, and the

VLS_NO_SERVER-FILE No license server has been set and unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

Client Server Static Library DLL

VLSgetFeatureInfo Error Codes

Error Code Description

Argument Description

featureName Name of the feature.

bufferSize Specifies the size of versionList.

versionList (out) An array containing the version list. Space should be
allocated by the caller.

unused1 Use NULL as the value.
98 Sentinel LM Programmer’s Reference Manual

Feature Query Functions
size of the array must be provided using bufferSize. This function is useful in
situations where you could have licenses for several versions of your
software and you wish to implement version-based licensing schemes.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetVersions Error Codes

Error Code Description

VLS_NO_SUCH_FEATURE License server does not have a license that
matches the requested feature, version and
capacity.

VLS_APP_UNNAMED featureName is NULL.

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available for
processing license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE No license server has been set and unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_BUFFER_TOO_SMALL An error occurred in the use of an internal buffer.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.
Sentinel LM Programmer’s Reference Manual 99

Chapter 3 – Sentinel LM Client API
VLSgetFeatureFromHandle

Returns the feature name corresponding to handle.

Syntax LS_STATUS_CODE VLSgetFeatureFromHandle(
LS_HANDLE handle,
char *buffer,
int bufferSize);

Description The feature name is returned in buffer which must be allocated by the call-
ing program. The size of buffer is passed in the argument bufferSize.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Client Server Static Library DLL

Argument Description

handle Handle returned by license request API.

buffer (out) Buffer to hold the feature name. Space allocated by caller.

bufferSize Size of the buffer.

VLSgetFeatureFromHandle Error Codes

Error Code Description

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL • buffer parameter is NULL.
• Size of feature information exceeds buff-

erSize parameter.
100 Sentinel LM Programmer’s Reference Manual

Feature Query Functions
VLSgetVersionFromHandle

Returns the version corresponding to handle.

Syntax LS_STATUS_CODE VLSgetVersionFromHandle(
LS_HANDLE handle,
char *buffer,
int bufferSize);

Description The feature version is returned in buffer which must be allocated by the call-
ing program. The size of buffer is passed in the argument, bufferSize.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Client Server Static Library DLL

Argument Description

handle Handle returned by LSRequest or VLSrequestExt.

buffer (OUT) Buffer to hold the feature version. Space allocated by caller.

bufferSize Size of the buffer.

VLSgetVersionFromHandle Error Codes

Error Code Description

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL • buffer parameter is NULL.
• Size of feature information exceeds buffer-

Size parameter.
Sentinel LM Programmer’s Reference Manual 101

Chapter 3 – Sentinel LM Client API
VLSgetTimeDriftFromHandle

Syntax LS_STATUS_CODE VLSgetTimeDriftFromHandle(
LS_HANDLE lshandle,
long *secondsServerAheadOfClient (*out*));

Description The function is used when the time properties of the client and server may
not be in sync. It returns the difference in seconds between the estimated
current time on the license server and the estimated time on the client. The
estimation error is usually the network latency time.

Note: The information returned by this function will be correct only immediately
after acquiring the handle. The information in the handle is not updated
subsequently.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Client Server Static Library DLL

Argument Description

lshandle Handle returned by LSRequest, VLSrequestExt,
or VLSqueuedRequest.

secondsServerAheadOf
Client

Caller allocates memory for *out* data. Function
returns the difference between system clocks.

VLSgetTimeDriftFromHandle Error Codes

Error Code Description

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL secondsServerAheadOfClient parameter is NULL.
102 Sentinel LM Programmer’s Reference Manual

Feature Query Functions
VLSgetFeatureTimeLeftFromHandle

Syntax LS_STATUS_CODE VLSgetFeatureTimeLeftFromHandle(
LS_HANDLE lshandle,
unsigned long *secondsUntilTheFeatureExpires(*out*));

Description The function is used when the time properties of the client and server may
not be in sync. It returns the difference in seconds between the estimated
current time on the license server and the estimated feature expiration time
on the license server.

Note: The information returned by this function will be correct only immediately
after acquiring the handle. The information in the handle is not updated
subsequently.

VLSgetFeatureTimeLeftFromHandle provides the difference between the
License Expiration Time and the Current System Time at the license server
end. For example, if the license expiration date is 20th Aug. 1998
(12:00PM) and the current time is 16th June 1998 (12:00AM), then this
call will return the difference between these two times, in seconds. This is
common to all the clients and is based on the license code for the feature.

Note: VLSgetFeatureTimeLeftFromHandle does not return the number of trial
days left in a trial license.

Client Server Static Library DLL

Argument Description

lshandle Handle returned by LSRequest or VLSrequestExt.

secondsUntilTheFeature
Expires

Caller allocates memory for *out* data. Function
returns the number of seconds until the
expiration of the license for this feature.
Sentinel LM Programmer’s Reference Manual 103

Chapter 3 – Sentinel LM Client API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetFeatureTimeLeftFromHandle Error Codes

Error Code Description

LS_BADHANDLE Invalid handle.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches the requested feature, version and
capacity.

LS_BUFFER_TOO_SMALL secondsUntilTheFeatureExpires is NULL.

VLS_NO_SERVER_RUNNING License server on specified host is not available
for processing the license operation requests.

VLS_NO_SERVER_RESPONSE Communication with the license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and cannot
determine which license server to use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.
104 Sentinel LM Programmer’s Reference Manual

Feature Query Functions
VLSgetKeyTimeLeftFromHandle

Syntax LS_STATUS_CODE VLSgetKeyTimeLeftFromHandle(
LS_HANDLE lshandle,
unsigned long *secondsUntilTheKeyExpires);

Description The function is used when the time properties of the client and server may
not be in sync. It returns the difference in seconds between the estimated
current time on the license server and the estimated license expiration time
on the license server.

Note: The information returned by this function will be correct only immediately
after acquiring the handle. The information in the handle is not updated
subsequently.

VLSgetkeyTimeLeftFromHandle returns the difference between the time
when the license token (as issued by the license server to the client) expires
(i.e., before this client must do an LSupdate) and the current time. Since the
information in the handle is not updated at regular intervals, the value
returned by this call is in very close proximity to the key lifetime mentioned
in the license. For example, if the token lifetime mentioned in the license is 2
minutes, the value returned by this call will be approximately 120.
Naturally, this value varies with each client.

Client Server Static Library DLL

Argument Description

lshandle Handle returned by LSRequest or VLSrequestExt.

secondsUntilTheFeature
Expires

Caller allocates memory for *out* data. Function
returns the number of seconds for the run-time
license to expire.
Sentinel LM Programmer’s Reference Manual 105

Chapter 3 – Sentinel LM Client API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Client Utility Functions

The following table lists functions that provide client library capabilities
useful to certain specialized applications:

VLSgetKeyTimeLeftFromHandle Error Codes

Error Code Description

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL secondsUntilTheKeyExpires parameter is
NULL.

Client Utility Functions

Functions Description

VLSdiscover Retrieves the names of the computers on the local
subnet (or beyond) running the Sentinel LM license
server which are authorized to service requests from
an application.

VLSaddFeature Adds licensing information to the license server’s
internal tables.

VLSaddFeatureToFile Adds licensing information about a feature to the
license server’s internal tables.

VLSdeleteFeature Removes licensing information from the license
server’s internal tables.

VLSgetLibInfo Retrieves Sentinel LM client library information.

VLSshutDown Shuts down the license server.

VLSwhere Locates and returns information about the server.
106 Sentinel LM Programmer’s Reference Manual

Client Utility Functions
VLSdiscover

Retrieves the names of the computers on the local subnet (or beyond) run-
ning the Sentinel LM license server which are authorized to service requests
from an application.

Syntax LS_STATUS_CODE VLSdiscover(
unsigned char *feature_name,
unsigned char *version,
unsigned char *reserved1,
int server_list_len,
char *server_list,
int optionFlag,
char *query_list);

Description feature_name, must be licensed by the same vendor as the library issuing the
VLSdiscover call. If version is NULL, it is treated as a wildcard and all license
servers that are authorized to service requests for feature_name will respond
regardless of version. If feature_name is NULL, version will be ignored and all
Sentinel LM license servers on the local subnet will respond. The space-
separated name list of the responding Sentinel LM license servers are

Client Server Static Library DLL

Argument Description

feature_name Name of the feature.

version Version of the feature.

reserved1 Use any value.

server_list_len Specifies the size of server_list.

server_list
(OUT)

Space separated list of license server names.

optionFlag A three bit flag which guides the behavior of VLSdiscover in
finding the license servers. Details are discussed later.

query_list A colon separated list of hostNames to be queried during
the search for license servers.
Sentinel LM Programmer’s Reference Manual 107

Chapter 3 – Sentinel LM Client API
returned in server_list. The buffer must be allocated prior to the call and its
size provided using server_list_len.

query_list is a colon-separated list of host names and/or IP-addresses which
are queried during the search for license servers.

optionFlag is a three-bit flag which can have any of the following values or a
combination of them:

■ VLS_DISC_NO_USERLIST - Does not check the host list specified by
the user. By default, it first checks the LSFORCEHOST environment
variable. If LSFORCEHOST doesn’t exist, it reads the list specified by
the user in the environment variable, LSHOST, and the file, LSHOST/
lshost. (The content of these lists are joined together and appended to
the contents of query_list) append them together and then append to
the query_list. Finally, all the hosts on this combined list are queried
during search for license servers.

■ VLS_DISC_RET_ON_FIRST - If the combined query list is NULL, this
function returns as soon as it contacts a license server and returns the
name of this license server in server_list. Otherwise, it returns when it
hears from a license server whose name is listed in the combined
query list. In this case, it returns, in server_list, that particular license
server name along with all other license servers which are not on the
list, but responded by that time. If this option is not specified, this
function, VLSdiscover, obtains all the names of all the license servers
which responded.

■ VLS_DISC_PRIORITIZED_LIST - Treats the combined query list as a
prioritized one, the left-most being the highest priority host. After
execution, server_list contains license servers sorted by this priority. If
this option is not specified, the combined query list is treated as a
random one.

■ VLS_DISC_DEFAULT_OPTIONS - This flag is a combination of the
aforementioned flags. It should be used if you are undecided which
options you need.

■ If you want to specify no flags, use the value
VLS_DISC_NO_OPTIONS.
108 Sentinel LM Programmer’s Reference Manual

Client Utility Functions
Returns The status code LS_SUCCESS is returned if stand-alone library is used.
Otherwise, it will return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Examples To get a list of all the Sentinel LM license servers running on the subnet, the
call can be made as:

char server_list[MAX_BUF];
VLSdiscover(NULL, NULL, NULL, MAX_BUF, server_list,
VLS_DISC_NO_OPTIONS, NULL);

To get one license server having feature for all versions of application, dots:

char server_list[MAX_BUF];
VLSdiscover("DOTS", NULL, NULL, MAX_BUF, server_list,
VLS_DISC_RET_ON_FIRST,NULL);

where “DOTS” is the feature name for the application, dots.

To find out license servers for dots version 1.0 running on the local subnet
as well as on computers 'troilus.soft.net' and '123.23.234.1', and get the
results in prioritized order:

char query_list[100];
char server_list[MAX_BUF];
strcpy(query_list, "troilus.soft.net:123.23.234.1");
VLSdiscover("DOTS", "1.0", NULL, MAX_BUF,
server_list, VLS_DISC_PRIORITIZED_LIST, query_list);

See Also “VLSsetBroadcastInterval” on page 66.

VLSdiscover Error Codes

Error Code Description

VLS_NO_RESPONSE_
TO_BROADCAST

No license servers have responded.

LS_NO_SUCCESS Failed to retrieve computer names on local subnet.

LS_NORESOURCES An error occurred in attempting to allocate memory
needed by this function.
Sentinel LM Programmer’s Reference Manual 109

Chapter 3 – Sentinel LM Client API
VLSaddFeature

Adds licensing information about a feature.

Syntax LS_STATUS_CODE VLSaddFeature(
unsigned char *licenseString,
unsigned char *unused1,
LS_CHALLENGE *unused2);

Description Dynamically adds the license code, licenseString, to the license server’s inter-
nal tables. If licensing information for this feature and version already exists
in the license server’s tables, it may be overwritten with the new
information.

Note: The feature is not permanently added to the license server, therefore the
feature will not be on the license server when the license server is shut-
down and restarted.

Client Server Static Library DLL

Argument Description

licenseString String containing licensing information.

unused1 Use NULL as the value.

unused2 Use NULL as the value.
110 Sentinel LM Programmer’s Reference Manual

Client Utility Functions
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

See Also “VLSdeleteFeature” on page 114.

VLSaddFeature Error Codes

Error Code Description

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

LS_NO_SUCCESS licenseString is NULL.

VLS_ADD_LIC_FAILED Generic error indicating the feature has not
been added.

VLS_BAD_DISTB_CRIT Invalid distribution criteria.

VLS_CLK_TAMP_FOUND License server has determined that the client’s
system clock has been modified. The license for
this feature has time-tampering protection
enabled, so the license operation is denied.

VLS_NO_SERVER_RUNNING License server on specified host is not available
for processing the license operation requests.

VLS_NO_SERVER_RESPONSE Communication with license server has timed
out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.
Sentinel LM Programmer’s Reference Manual 111

Chapter 3 – Sentinel LM Client API
VLSaddFeatureToFile

Adds licensing information about a feature.

Syntax LS_STATUS_CODE VLSaddFeatureToFile(
unsigned char *licenseString,
unsigned char *unused1,
unsigned char *unused2,
LS_CHALLENGE *unused3);

Description Dynamically adds licensing information about a feature to the license
server’s internal tables. If licensing information for this feature already
exists in the license server’s tables, it may be overwritten with the new
information.

Note: The feature is permanently added to the license server, therefore the fea-
ture will be on the license server when the license server is shutdown and
restarted.

Client Server Static Library DLL

Argument Description

licenseString String containing licensing information.

unused1 Use NULL as the value.

unused2 Use NULL as the value.

unused3 Use NULL as the value.
112 Sentinel LM Programmer’s Reference Manual

Client Utility Functions
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSaddFeatureToFile Error Codes

Error Code Description

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

LS_NO_SUCCESS licenseString is NULL.

VLS_ADD_LIC_FAILED Generic error indicating the feature has not
been added.

VLS_BAD_DISTB_CRIT Invalid distribution criteria.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified. The
license for this feature has time-tampering
protection enabled, so the license operation
is denied.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.
Sentinel LM Programmer’s Reference Manual 113

Chapter 3 – Sentinel LM Client API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

See Also “VLSdeleteFeature” on page 114.

VLSdeleteFeature

Deletes licensing information about a feature.

Syntax LS_STATUS_CODE VLSdeleteFeature(
unsigned char *featureName,
unsigned char *version,
unsigned char *unused1,
LS_CHALLENGE *unused2);

Description Deletes licensing information from the license server’s internal tables, for
the given featureName and version. This call does not delete licenses from the
license file.

Client Server Static Library DLL

Argument Description

featureName Name of the feature.

version Version of the feature.

unused2 Unused.

unused3 Unused.
114 Sentinel LM Programmer’s Reference Manual

Client Utility Functions
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSdeleteFeature Error Codes

Error Code Description

VLS_APP_UNNAMED • featureName is NULL
• version is NULL.

Both feature name and version cannot be
NULL at the same time.

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature, version and
capacity.

VLS_DELETE_LIC_FAILED Generic error indicating the feature has not
been deleted.

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

VLS_MULTIPLE_VENDORID_
FOUND

The license server has licenses for the same
feature and version from multiple vendors.
It is ambiguous which feature is requested.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server could
not be understood.
Sentinel LM Programmer’s Reference Manual 115

Chapter 3 – Sentinel LM Client API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

See Also “VLSaddFeature” on page 110.

VLSgetLibInfo

Returns information about the Sentinel LM client library currently being
used in the structure pointed to by pInfo.

Syntax LS_STATUS_CODE VLSgetLibInfo(LS_LIBVERSION *pInfo)

typedef struct {
unsigned long ulInfoCode;
char szVersion [VERSTRLEN];
char szProtocol [VERSTRLEN];
char szPlatform [VERSTRLEN];
char szUnused1 [VERSTRLEN];
char szUnused2 [VERSTRLEN];
} LS_LIBVERSION

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSdeleteFeature Error Codes (Continued)

Error Code Description

Member Description

ulInfoCode Unused.

szVersion The version of the Sentinel LM client library.

szProtocol The communication protocol being used for application/
license server communication.

szPlatform Platform of the client application.

szUnused1 Unused.

szUnused2 Unused.
116 Sentinel LM Programmer’s Reference Manual

Client Utility Functions
Description Space for pInfo must be allocated by the caller.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSshutDown

Shuts down license server at specified hostname.

Syntax LS_STATUS_CODE VLSshutDown(
char *hostname);

Description A client can send this message to the license server in order to shut the
license server down. Once shut down, there is no automatic way of restart-
ing the license server through any client message. Any applications that
may be running at that time could stop running after a while, as the license
renewal messages will fail once the license server goes down. The license
server does not check for running applications prior to shutting down.

The following permissions tests must succeed in order for this call to be
successful:

■ The client and license server must be running on the same network
domain name.

VLSgetLibInfo Error Codes

Codes Description

LS_NORESOURCES pInfo is NULL.

Client Server Static Library DLL

Argument Description

hostname The host name of the computer running the license server.
Sentinel LM Programmer’s Reference Manual 117

Chapter 3 – Sentinel LM Client API
■ User identification of the license server process should match the
client, or client must be run by superuser (root) as shown in the
following table:

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Server Win 95/98 WinNT/2000
(Admin)

UNIX
(non-root)

Unix
(root)

Client UNIX
(non-root)

Same
UserName

— Same
UserName
or UserId

—

Win 95/98
(non-Admin)

Same
UserName
or
SameHost

— Same
UserName

—

WinNT
(non-Admin)

Same
UserName

— Same
UserName

—

Win 95/98
(Admin)

Yes Yes Yes Yes

WinNT/2000
(Admin)

Yes Yes Yes Yes

UNIX (root) Yes Yes Yes Yes

VLSshutDown Error Codes

Error Codes Description

VLS_CALLING_ERROR hostName parameter is NULL.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available
for processing the license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed
out.

VLS_HOST_UNKNOWN Invalid hostName is specified.
118 Sentinel LM Programmer’s Reference Manual

Client Utility Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSwhere

Retrieves the names of the computers on the local subnet (beyond running)
the Sentinel LM license server which are authorized to service requests from
an application.

Syntax LS_STATUS_CODE VLSwhere(
unsigned char *feature_name,
unsigned char *version,
unsigned char *unused1,
int *bufferSize,
char *server_names,

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

Client Server Static Library DLL

VLSshutDown Error Codes (Continued)

Error Codes Description
Sentinel LM Programmer’s Reference Manual 119

Chapter 3 – Sentinel LM Client API
int broadcastFlag);

Description Locates and returns information about the license servers.

Returns The status code LS_SUCCESS is returned if stand-alone library is used. Oth-
erwise, it will return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Trial License Related Functions

The following table summarizes the trial license related functions:

Argument Description

feature_name Name of the feature.

version Version of the feature.

unused1 Use any value.

bufferSize Specifies the size of the buffer.

server_names
(OUT)

Space separated list of license server names.

broadcastFlag A three bit flag which guides the behavior of VLSwhere in
finding the license servers.

VLSwhere Error Codes

Error Codes Description

VLS_NO_RESPONSE_
TO_BROADCAST

Failed to retrieve computers names on local subnet.

LS_NORESOURCES An error occurred in attempting to allocate memory
needed by this function.

Trial License Related Functions

Function Description

VLSgetTrialPeriodLeft Returns the remaining time left in a trial license.
120 Sentinel LM Programmer’s Reference Manual

Trial License Related Functions
VLSgetTrialPeriodLeft

Syntax int VLSgetTrialPeriodLeft(
unsigned char *feature_name,
unsigned char *version,
unsigned long *trialperiod,
unsigned char *unused1);

Description Returns the remaining time left in a trial license. The usage period for trial
licenses does not begin until the application is first executed, i.e., not when
the application is installed.

Returns The status code LS_SUCCESS is returned if stand-alone library is used. Oth-
erwise, it will return the following error codes:

Argument Description

feature_name Name of the feature.

version Version of the feature. Must be unique.

trialperiod
(OUT)

Number of seconds left in the trial license. Points to
integer in the trialperiod parameter.

unused1 Uses NULL as the value.

VLSgetTrialPeriodLeft Error Codes

Error Codes Description

VLS_CALLING_ERROR • feature_name is NULL.
• version is NULL
• trialperiod is NULL

Both feature name and version cannot be NULL at
the same time.

VLS_SEVERE_INTERNAL
_ERROR

An Irrecoverable internal error has occurred in
processing.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available for
processing license operation request.

VLS_HOST_UNKNOWN Invalid hostname was specified.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the licensing operation.
Sentinel LM Programmer’s Reference Manual 121

Chapter 3 – Sentinel LM Client API
 For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Getting License Server Information

Developers sometimes need to know the details about the license servers
running on a customer’s computer to see if conflicts are occurring between
license servers provided by different developers or to detect a specific license
server. The VLSservInfo structure contains the server information. A new
API call, VLSgetServInfo, now provides a data structure into which infor-
mation about a specific license server can be requested or obtained by a
client application.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed out.

VLS_BAD_SERVER_
MESSAGE

Message from license server could not be
understood.

VLS_INTERNAL_ERROR An internal error has occurred in processing.

VLS_NO_TRIAL_INFO No Trial usage info.

VLS_TRIAL_LIC_
EXHAUSTED

Trial license expired or trial license usage exhausted.

VLS_TRIAL_INFO_
FAILED

Trial usage query failed

VLS_NO_SERVER_FILE The License server has not been set and is unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

An error has occurred in decrypting (or decoding) a
network message·Probably an incompatible or
unknown server, or a version mismatch.

VLSgetTrialPeriodLeft Error Codes

Error Codes Description
122 Sentinel LM Programmer’s Reference Manual

Getting License Server Information
VLSservInfo Struct

typedef struct{
 long structSz;
 int major_no;
 int minor_no;
 int revision_no;
 int build_no;
 unsigned char locale[VLS_SERV_LOCALE_STR_LEN];
 unsigned char vendor_info[VLS_SERV_VNDINFO_STR_LEN];
 unsigned char platform[VLS_SERV_PLATFORM_STR_LEN];
 unsigned long lock_mask;
 unsigned char unused1[VLS_SERV_UNUSED1_STR_LEN];
 long unused2;
 VLStimeTamperInfo tmtmpr_info;
 VLSmachineID machine_id;
} VLSservInfo;

Argument Description

structSz Size of the structure. Must be set by the user.

major_no The major number of the server.

mainor_no The minor number of the server.

revision_no The revision number of the server.

build_no The build number of the server.

locale The locale for which the server was built.

vendor_info Vendor specified license server identification. This can
be customized through VLSsetServInfo API. Default is
null string

platform The platform for which the server was built.

lock_mask Lock selector used in computing the machine ID of the
server machine.
Sentinel LM Programmer’s Reference Manual 123

Chapter 3 – Sentinel LM Client API
Retrieving Information About Time Tampering -
VLStimeTamperInfo Struct

The Sentinel LM license server is configured to detect tampering of the sys-
tem clock. You also have the option of implementing your own functionality
to retrieve the time tamper informationusing the VLStimeTamperInfo
struct.

typedef struct timetampering_info_struct{
 long structSz;
 time_t lastTime;
 time_t currTime;
 long grace_period;
 int percentViolationAllowed;
 int numViolationForError;
 int numViolationFound;
 int percentViolationFound;
 unsigned long clkSetBackTime;
} VLStimeTamperInfo;

unused1 Reserved. Uses NULL as the value.

unused2 Reserved. Uses NULL as the value.

tmtmpr_info Contains the time tampering related information on
the server machine.

machine_id Machine ID structure. To be used in conjunction with
lock_mask to obtain the locking code of the server
machine. See VLSmachineIDtoLockCode API for details.

Argument Description
124 Sentinel LM Programmer’s Reference Manual

Getting License Server Information
Retrieving Information About a License Server
(VLSgetServInfo)

Returns information regarding the given license server, including version,
locale, platform, and the locking information of the computer on which the
license server is running. After a successful call, the VLSservInfo data struc-
ture will contain the information returned from the license server.

Argument Description

structSz Size of the structure. Must be set by the user.

lastTime The last known good time when no clock tampering
was detected.

currTime Current time on the server.

grace_period If Sentinel LM finds the system clock has been set
back by less than grace_period seconds, it will not be
counted as a violation.

percentViolation
Allowed

Percentage of system files that must be found in
violation of the grace period before concluding that
the system clock has been set back. Used on UNIX
systems only.

numViolationFor
Error

Number of system files that must be found in
violation of the grace period before concluding that
the system clock has been set back. Used on UNIX
systems only.

numViolationFound Actual number of system files found in violation of
the grace period. Used on UNIX systems only.

percentViolation
Found

Percentage of system files found in violation of the
grace period. Used on UNIX systems only.

clkSetBackTime The actual amount of time by which the clock has
been set back. This value is zero if no time tampering
has been detected.
Sentinel LM Programmer’s Reference Manual 125

Chapter 3 – Sentinel LM Client API
This call will also return the locking information for the computer on which
the license server is running. This can be used to generate lock codes as the
echoID.exe utility does.

Syntax LS_STATUS_CODE VLSgetServInfo(
unsigned char *server_name,
VLSservInfo *srv_info,
unsigned char *unused1,
unsigned long *unused2);

Returns The status code LS_SUCCESS is returned if successful. Otherwise, a specific
error code is returned indicating the reason for the failure. Possible errors
returned by this call include VLS_NOT_SUPPORTED.

For a complete list of error codes, see Appendix C, “Sentinel LM Error and
Result Codes,” on page 397.

VLSservInfo Data Structure

The VLSservInfo data structure contains the information returned by
VLSgetServInfo:

Argument Description

server_name The name of the server you would like to retrieve
information from. You can pass this as NULL if you want
this API call to pick up the server name if previously set
by VLSsetContactServer or LSFORCEHOST. If set to NULL
but no server name is found, an error code will be
returned. If not set to NULL, this value is independent of
the LSHOST, LSFORCEHOST, and VLSsetContactServer
values.

srv_info This points to the VLSservInfo data structure, which is
populated with information returned from the server
such as platform, locale, build versions, and locking
information (see below). You may not set this to NULL.

unused1 Reserved. Uses NULL as the value.

unused2 Reserved. Uses NULL as the value.
126 Sentinel LM Programmer’s Reference Manual

Error Handling
typedef struct{
 long structSz;
 int major_no;
 int minor_no;
 int revision_no;
 int build_no;
 unsigned char locale[VLS_SERV_LOCALE_STR_LEN];
 unsigned char vendor_info[VLS_SERV_VNDINFO_STR_LEN];
 unsigned char platform[VLS_SERV_PLATFORM_STR_LEN];
 unsigned long lock_mask;
 unsigned char unused1[VLS_SERV_UNUSED1_STR_LEN];
 long unused2;
 VLStimeTamperInfo tmtmpr_info;
 VLSmachineID machine_id;
} VLSservInfo;

Error Handling

The following table summarizes the error-handling functions:

Sentinel LM has built-in responses to most error conditions expected to be
encountered in the field. For a list of types of error conditions detected by
Sentinel LM, their descriptions, and the default built-in actions, see
Appendix C, “Sentinel LM Error and Result Codes,” on page 397. The
Sentinel LM client library has a built-in error handler for each type of error
listed.

Error-Handling Functions

Function Description

VLSerrorHandle Toggles default error handling on or off.

LSGetMessage Prints error messages corresponding to specified
error code.

VLSsetErrorHandler Registers custom error handlers.

VLSsetUserErrorFile Configures the display of error messages.
Sentinel LM Programmer’s Reference Manual 127

Chapter 3 – Sentinel LM Client API
An error handler is a simple function that tries to correct whatever situation
caused the error condition to occur. In most cases, the conditions are
difficult to correct, and the handlers perform some clean-up tasks and
display error messages.

If an error occurs while processing a function call and the default error
handlers are unable to correct the situation, the API functions return an
error code after displaying an appropriate error message. If the built-in error
handlers are able to correct the error-causing condition, the function call
returns the success code, LS_SUCCESS, as if the error never occurred.

VLSerrorHandle

Turns default error handling on or off.

Syntax LS_STATUS_CODE VLSerrorHandle(
int flag);

Description If the value of flag is the constant, VLS_ON, error handling is enabled. If flag
is VLS_OFF, error handling is disabled. When error handlers are not being
used, the client function call returns the status code of the latest error
condition. The caller of the function should therefore check the value
returned by the function before proceeding.

Returns The status code LS_SUCCESS is always returned. For a complete list of the
error codes, see Appendix C, “Sentinel LM Error and Result Codes,” on page
397.

Client Server Static Library DLL

Argument Description

flag To turn on error handling, use VLS_ON. To turn off error
handling, use VLS_OFF. Default: VLS_ON.
128 Sentinel LM Programmer’s Reference Manual

Error Handling
LSGetMessage

Prints error messages corresponding to specified error code.

Syntax LS_STATUS_CODE LSGetMessage(
LS_HANDLE lshandle,
LS_STATUS_CODE Value,
unsigned char *buffer,
unsigned long bufferSize);

Description Returns in the buffer a text description of the error condition indicated by
error code value, for the feature associated with lshandle. The buffer must be
allocated by the calling function with its size indicated by bufferSize.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Client Server Static Library DLL

Argument Description

lshandle Handle returned by LSRequest or VLSrequestExt.

value Error code.

buffer (out) Buffer to store message.

bufferSize Size of the buffer.

LSGetMessage Error Codes

Error Code Description

LS_NO_MSG_TEXT buffer is NULL
bufferSize is zero or negative.
Sentinel LM Programmer’s Reference Manual 129

Chapter 3 – Sentinel LM Client API
VLSsetErrorHandler

Enables registration of custom error handlers.

Syntax LS_STATUS_CODE VLSsetErrorHandler(
LS_STATUS_CODE (*myErrorHandler) (LS_STATUS_CODE,
char*),
LS_STATUS_CODE LSErrorType);

Description In some situations, the default responses may not be suitable. Therefore,
Sentinel LM allows custom error handling routines to replace the default
routines. Customized routines should perform actions that are functionally
similar to the defaults.

myErrorHandler must point to the error handling function and adhere to the
prototype outlined below. LSErrorType must indicate the type of the error to
be handled. The Sentinel LM default routines continue to handle other
errors. The customized function should accept as input the error code of the
condition that caused it to be called and the name of the feature. The same
error-handling function can be used to handle all error conditions for all
features of an application, using internal conditional statements. The spe-
cial target error code, VLS_EH_SET_ALL, can be used to set up the provided
error handler to handle all errors.

Customized error handlers must adhere to the following prototype:

LS_STATUS_CODE myErrorHandler,
LS_STATUS_CODE errorCode,
char *featureName;

Client Server Static Library DLL

Argument Description

errorCode The error code to be handled.

featureName The name of the feature involved in the error.
130 Sentinel LM Programmer’s Reference Manual

Error Handling
If customized error handlers are used, a client function call will return the
value returned by the error handler if it was the last error handler to be
called.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSsetUserErrorFile

Configures the manner in which error messages are displayed.

Syntax typedef enum {
VLS_STDOUT, VLS_STDERR
} VLS_ERR_FILE;

LS_STATUS_CODE VLSsetUserErrorFile(
VLS_ERR_FILE msgFile,
char LSFAP *filePath);

Description This function configures the displaying of error messages to the user
through the default error handlers. If you disable the default error handlers,
you do not need to use this function.

Note: The default handling of error messages is as follows:
Windows Pop up a Message Box.
Unix Write to stderr.

VLSsetErrorHandler Error Codes

Code Description

VLS_CALLING_ERROR • myErrorHandler parameter is NULL
• LSErrorType is an invalid error type.

Client Server Static Library DLL
Sentinel LM Programmer’s Reference Manual 131

Chapter 3 – Sentinel LM Client API
You can alter this behavior by providing either a FILE* or a file path, while
keeping the other parameter NULL. If you provide both parameters, prefer-
ence will be given to the FILE*.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Tracing Sentinel LM Operation

Enables tracing of the internal operation of the Sentinel LM client library.

Syntax LS_STATUS_CODE VLSsetTraceLevel (
int traceLevel);

VLSsetUserErrorFile Error Codes

Code Description

VLS_CALLING_ERROR Could not open msgFile.

Client Server Static Library DLL

Argument Description

traceLevel The default value of traceLevel is VLS_NO_TRACE.
Other valid values are:
• VLS_TRACE_KEYS
• VLS_TRACE_FUNCTIONS
• VSL_TRACE_ERRORS
• VLS_TRACE_ALL
132 Sentinel LM Programmer’s Reference Manual

Chapter 4
License Code Generation API

The License Code Generation Application Programming Interface (API)
makes it possible to generate license codes to authorize use of an application
program. The functions are prototyped in lscgen.h and the implementation
is contained in lscgen32.lib. Use of these files enables you to write your own
utility program to generate license codes. Such programs must be written to
run under Win95/98/ME, Windows NT, Windows 2000, Windows 2003 or
Windows XP .

Programs that do license generation must first allocate an integer handle
and a data structure of type codeT. The handle is used with all other License
Generation functions, and must be initialized before any of those functions
can be called. The codeT data structure is used to pass arguments back and
forth between the program and the different library functions.

A typical sequence of operations to generate a license would look like the
following:

■ Be sure that a handle and a codeT data structure have been allocated.

■ Call VLScgInitialize to initialize the handle. This will ensure that the
number of handles has not exceeded the limit, allocate space for
internal data structures, and initialize the error list and error count.

■ Call VLScgReset to install default values into the codeT data structure.
This must be done before setting the values of any of the fields in the
data structure.
Sentinel LM Programmer’s Reference Manual 133

Chapter 4 – License Code Generation API
■ Obtain input from the user that is to be used to define the license code.
The order of input is important since some values will depend on
others. The order of input refers to the Allow and Set functions of code
struct. We suggest you use the Allow function first to check the
differential integrity of the field value before using the Set function.
Please refer to Table “Functions of the CodeT Struct,” on page 149.

■ Call the appropriate VLScgAllowXXX function for each input to
ensure that its value can be properly included into the license code.

■ If the input can be accepted, call the corresponding VLScgSetXXX
function. This will lock the codeT data structure, install the value in
the designated field, and then unlock the structure.

■ If the set function causes an error, call VLScgPrintError function to
copy the error structure to a specified file.

■ After all inputs have been received, call VLScgGenerateLicense to
create the license string.

■ Call VLScgCleanup to release the handle.

License Code Generation Functions

Available function calls fall into these categories:

■ CodeT Struct

■ Basic functions

■ Functions which retrieve or print errors

■ Functions which set flags and data fields of codeT struct

■ License generation functions

■ License meter related functions
134 Sentinel LM Programmer’s Reference Manual

License Code Generation Functions
Example:

/* Copyright (C) 2004 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/*This Module contains Proprietary Information of */
/*Rainbow Technologies,Inc and should be treated as*/
/* Confidential */

#include <stdio.h> /* For scanf(), sprintf() etc.*/
#include "lscgen.h" /* For the code generator API.*/
/* The fixed feature name of licenses generated by this
example * program. */
#define VLS_CGENXMPL_FEATURE_NAME "CGENXMPL"
/*Mnemonic used for setting code structure for long codes.*/
#define VLS_LONG_CODE_TYPE_STR "1"

/*
* Utility function to print code generator API errors to
* stderr.
* It also calls the code generator library cleanup function on
* the handle if necessary.
*/
static int VLSPrintErrors (VLScg_HANDLE *iHandle, int retCode)

{
 if (*iHandle != VLScg_INVALID_HANDLE) {
 (void) VLScgPrintError(*iHandle, stderr);
 (void) VLScgCleanup(iHandle);
}
return retCode;
} /* VLSPrintErrors() */
/*
* A simple example to illustrate the use of the code
* generation API to generate license strings.
* This is a command line utility that generates license
* codes for a fixed feature name, "CGENXMPL".
* It prompts the user for the expiration date and then calls
* the code generator API functions to generate an
* appropriate license for CGENXMPL.
* To build this example, compile and then link with the
Sentinel LM Programmer’s Reference Manual 135

Chapter 4 – License Code Generation API
* appropriate code generator API library - lscgen32.lib
*/
int main ()
{
 /* Code generator library handle. */
 VLScg_HANDLE iHandle;

/* Code generator APIs license code structure. */
 codeT licCode;

/* Expiration date information: acquired from user. */
 int expMonthInt, expDayInt, expYearInt;
/* String versions of above for calling code generator API
functions.*/
 char expMonth[10], expDay[10], expYear[10];

/* For license string to be returned by code generator API.*/
 char *licStr = (char *) NULL;

/* For return codes from code generator API functions. */
 int retCode;

/* Initialize the code generator library. */
if((retCode=VLScgInitialize(&iHandle))!= VLScg_SUCCESS){
 (void) VLSPrintErrors(&iHandle, retCode);
 fprintf(stderr, "\nERROR: Code generator library
 initialization failed.\n");
 return retCode;
} /* if (!VLScgInitialize()) */

/* Initialize the license code structure. */
if((retCode=VLScgReset(iHandle,&licCode))!=VLScg_SUCCESS)
 return VLSPrintErrors(&iHandle, retCode);

/* Specify that we want to generate a long code. */
if ((retCode = VLScgSetCodeLength(iHandle, &licCode,
 VLS_LONG_CODE_TYPE_STR))
 != VLScg_SUCCESS)
 return VLSPrintErrors(&iHandle, retCode);

/* Set the feature name. */
if (VLScgAllowFeatureName(iHandle, &licCode) == 0)
 return VLSPrintErrors(&iHandle, VLScg_FAIL);
136 Sentinel LM Programmer’s Reference Manual

License Code Generation Functions
if ((retCode = VLScgSetFeatureName(iHandle, &licCode,
 VLS_CGENXMPL_FEATURE_NAME))
 != VLScg_SUCCESS)
 return VLSPrintErrors(&iHandle, retCode);
/*

* Prompt for and acquire the expiration date from the user.*/
printf("License Expiration Month [1-12] : ");
scanf("%d", &expMonthInt);
printf("License Expiration Day [1-31] : ");
scanf("%d", &expDayInt);
printf("License Expiration Year : ");
scanf("%d", &expYearInt);
/* Convert expiration date information to strings. */
sprintf(expMonth, "%d", expMonthInt);
sprintf(expDay, "%d", expDayInt);
sprintf(expYear, "%d", expYearInt);

/* Set the expiration date. */
if (VLScgAllowLicExpiration(iHandle, &licCode) == 0)
 return VLSPrintErrors(&iHandle, VLScg_FAIL);

if (((retCode = VLScgSetLicExpirationMonth(iHandle,
 &licCode,expMonth))
 != VLScg_SUCCESS) ||
 ((retCode = VLScgSetLicExpirationDay(iHandle,

&licCode,expDay))
 != VLScg_SUCCESS) ||
 ((retCode = VLScgSetLicExpirationYear(iHandle,
 &licCode,expYear))
 != VLScg_SUCCESS))
return VLSPrintErrors(&iHandle, retCode);

/* Generate the license: memory for license string is
allocated by library. */

if ((retCode = VLScgGenerateLicense(iHandle, &licCode,
 &licStr))
 != VLScg_SUCCESS)
 return VLSPrintErrors(&iHandle, retCode);

/* Print out the license string. */
 (void) fprintf(stdout, "%s\n", licStr);
Sentinel LM Programmer’s Reference Manual 137

Chapter 4 – License Code Generation API
/* Free the license string, which was allocated by
VLScgGenerateLicense() */
free(licStr);

/* Terminate use of code generation library cleanly. */
(void) VLScgCleanup(&iHandle);
return 0;
} /* main() */

CodeT Struct
Description Holds the licensing information that is set using VLScgSetXXXX APIs and

passes the same to VLScgGenerateLicense API to generate the
corresponding license string. Contains the decoded information from the
license string as returned by VLScgDecodeLicense API.

Syntax typedef struct {
/* List of flags to be set by external callers: */

int code_type;/* VLScg_SHORT_CODE/VLScg_LONG_CODE/
 VLScg_SHORT_NUMERIC_CODE */

int additive;
int client_server_lock_mode;
int holding_crit;
int sharing_crit;
int server_locking_crit1[VLScg_MAX_NUM_SERVERS];
int server_locking_crit2[VLScg_MAX_NUM_SERVERS];
int client_locking_crit[VLScg_MAX_NUM_NL_CLIENTS];
int standalone_flag;
int out_lic_type;
int clock_tamper_flag;
/* List of data fields to be set by external callers: */
char feature_name [VLScg_MAX_CODE_COMP_LEN+1];
char feature_version [VLScg_MAX_CODE_COMP_LEN+1];
int birth_day;
int birth_month;
int birth_year;
int death_day;
int death_month;
int death_year;
int num_servers ;
138 Sentinel LM Programmer’s Reference Manual

CodeT Struct
char server_lock_info1 [VLScg_MAX_NUM_SERVERS]
 [VLScg_MAX_SERVER_LOCK_INFO_LEN+1];
char server_lock_info2 [VLScg_MAX_NUM_SERVERS]
 [VLScg_MAX_SERVER_LOCK_INFO_LEN+1];
int num_nl_clients;
char nl_client_lock_info[VLScg_MAX_NUM_NL_CLIENTS]
 [VLScg_MAX_NL_CLIENT_INFO_LEN+1];
unsigned num_keys[VLScg_MAX_NUM_FEATURES];
unsigned soft_limit;
unsigned keys_per_node [VLScg_MAX_NUM_NL_CLIENTS];
int num_subnets;
char site_lic_info
[VLScg_MAX_NUM_SUBNETS][VLScg_MAX_SUBNET_INFO_LEN+1];
unsigned share_limit;
int key_life_units;
unsigned long key_lifetime;
int key_hold_units;
unsigned long key_holdtime;
int num_secrets;
char secrets [VLScg_MAX_NUM_SECRETS][VLScg_MAX_SECRET_LEN+1];
char vendor_info [VLScg_MAX_CODE_COMP_LEN+1];

/* New additions */

int licType;
int trialDaysCount;
int use_auth_code;
int numeric_type;

/* for codegen_version >= 7 */
time_t conversion_time;
int isRedundant;
int majority_rule;
int isCommuter;
int log_encrypt_level;
int elan_key_flag;

/* Fields for internal use, or unused */
int vendor_code;
int version_num;
int licensing_crit;
/*Fields for multi_key for short numeric codegen version >=2 */
int num_features;
Sentinel LM Programmer’s Reference Manual 139

Chapter 4 – License Code Generation API
int key_type;

/* Fields for capacity Licensing */
int capacity_flag;
int capacity_units;
unsigned long capacity;
} codeT;

Member Description

code_type Pointer to CodeT struct

additive License type can be additive or exclusive.

client_server_lock
_mode

Locking mode can be:
• VLScg_FLOATING- Server is locked
• VLScg_BOTH_NODE_LOCKED - Clients and server

are locked
• VLScg_DEMO_MODE- Demo license (no locking)
• VLScg_CLIENT_NODE_LOCKED-Only clients are

locked

holding_crit Criterion for held licenses can be:
• VLScg_HOLD_NONE
• VLScg_HOLD_VENDOR
• VLScg_HOLD_CODE

sharing_crit Criterion for sharing of non-capacity licenses, can be:

• VLScg_NO_SHARING
• VLScg_USER_SHARING

• VLScg_HOSTNAME_SHARING
• VLScg_XDISPLAY_SHARING

• VLScg_VENDOR_SHARING
Criterion for sharing of capacity licenses, can be:

• VLScg_NO_TEAM
• VLScg_USER_BASED_TEAM

• VLScg_HOSTNAME_BASED_TEAM
• VLScg_XDISPLAY_BASED_TEAM

• VLScg_VENDOR_BASED_TEAM

server_locking_
crit1

• Server lock selector/criterion (group 1)
• Allows 2 hostid's per server
140 Sentinel LM Programmer’s Reference Manual

CodeT Struct
server_locking_
crit2

• Server lock selector/criterion (group 2)
• Allow 2 hostid's per server

client_locking_
crit

• Client lock selector/criterion
• Allow 1 hostid per client

standalone_flag Specifies if the license is stand-alone or network.

out_lic_type Specifies if the license is
• Encrypted
• Expanded readable
• Concise readable

clock_tamper_
flag

If set then the license does not allow time tampering

feature_name Name of the feature

feature_version Version of the feature

birth_day day of the month (1-31)

birth_month 1 - 12 or JAN - DEC

birth_year 2003 to...; minimum birth year can be 2003.

death_day max day of the month (1-31)

death_month 1 - 12 or JAN - DEC

death_year 2003 to... ; minimum death year can be 2003.

num_servers Identifies the number of license servers.
1serverallowed for single server application and
maximum 11 servers allowed for redundant server
application.

server_lock_info1 Stores information in ascii

server_lock_info2 Stores information in ascii

num_nl_clients Number of nodelocked clients, maximum of 7
nodelocked clients allowed.

nl_client_lock_
info

Stores information in ascii

num_keys Number of concurrent keys

Member Description
Sentinel LM Programmer’s Reference Manual 141

Chapter 4 – License Code Generation API
soft_limit 0 to num_keys

keys_per_node Number of keys alloted to each client for a network
mode license

num_subnets The number of subnet specifications provided for the
site.

site_lic_info Stores information in binary

share_limit/
team-limit

• Number of clients/users who can share a single
license key .

• Used as team limit in case of capacity license.

key_life_units Determines lifetime least count

long key_lifetime Absolute value in minutes

key_hold_units Flag which determines heldtime least count

key_holdtime Absolute value in minutes

num_secrets Number of Challenge response secrets

secrets Stores information in ascii

vendor_info The vendor-defined information string. The maximum
length of vendor_info string can be 395 characters.

licType Trial or Normal license type

trialDaysCount Life of trial license.

use_auth_code For multi-keys or short numeric codes

numeric_type For short numeric codes
• 0 - non-numeric
• 1 - general short numeric
• 2 - general numeric
• 10 and above specific type for codegen_version=7

isRedundant Validates if the license is actually redundant.

majority_rule Checks whether majority rule is on or off.

isCommuter Commuter licenses.

log_encrypt_level For encryption level in the license code.

Member Description
142 Sentinel LM Programmer’s Reference Manual

Basic Functions
Basic Functions

The following table summarizes the basic functions for this library:

VLScgInitialize

Syntax int VLScgInitialize(
VLScg_HANDLE *iHandleP);

vendor_code Vendor identification code

version_num Version number

meter_value Fields for multi_key for short numeric codegen version
>=2

num_features Number of features in case of multi key

key_type Single key/Multi key for short numeric only

capacity_flag Specifies if the license is a capacity or non-capacity
license. Values can be:
• VLScg_CAPACITY_NONE
• VLScg_CAPACITY_NON_POOLED
• VLScg_CAPACITY_POOLED

capacity_units Flag which determines capacity least count

long capacity The capacity of this license.

Member Description

Basic Functions

Function Description

VLScgInitialize Initializes the handle.

VLScgCleanup Destroys the created handle.

VLScgReset Resets the structure with default values.

Argument Description

iHandleP The pointer to the instance handle for this library.
Provides access to the internal data structure.
Sentinel LM Programmer’s Reference Manual 143

Chapter 4 – License Code Generation API
Description Required library initialization call. Every API call requires a valid handle.
This function allocates resources required for generating licenses. This func-
tion must be called before using any other VLScgXXX function.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

See Also “VLScgCleanup” on page 144

VLScgCleanup

Syntax int VLScgCleanup(
VLScg_HANDLE *iHandleP);

Description This function destroys the handle and its associated resources created by
VLScgInitialize.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, a spe-
cific error code is returned indicating the reason for failure. For a complete
list of the error codes, see Appendix D, “Error and Result Codes for License
Generation Functions,” on page 415.

VLScgInitialize Error Codes

Error Code Description

VLScg_MAX_LIMIT_CROSSED No more handles left.

VLScg_BAD_HANDLE Call VLScgCleanup to free the resources
associated with invalid handle.

VLScg_LICMETER_NOT_
SUPPORTED

Your Sentinel LM License Meter is not
supported.

Argument Description

iHandleP The pointer to the instance handle for this library.
144 Sentinel LM Programmer’s Reference Manual

Functions Which Retrieve or Print Errors
VLScgReset

Syntax int VLScgReset(
VLScg_HANDLE iHandleP,
codeT *codeP);

Description This function resets the codeP structure by filling in default values. It must
be called before calling VLScgSetXXX functions.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, a spe-
cific error code is returned indicating the reason for failure. For a complete
list of the error codes, see Appendix D, “Error and Result Codes for License
Generation Functions,” on page 415.

Functions Which Retrieve or Print Errors

When errors are encountered during execution of License Generation func-
tions, they are queued to the handle that controls access to the library in
use. These errors may be printed immediately, or allowed to accumulate and
flushed at a later time. The following table summarizes the functions used to
retrieve or print errors:

Argument Description

iHandleP The instance handle for this library.

codeP Name of the structure.

Functions Which Retrieve and Print Errors

Function Description

VLScgGetNumErrors Retrieves number of error messages recorded.

VLScgGetErrorLength Retrieves the length of a error message.

VLScgGetErrorMessage Retrieves the earliest error from the handle.

VLScgPrintError Spills the error struct to a file.
Sentinel LM Programmer’s Reference Manual 145

Chapter 4 – License Code Generation API
VLScgGetNumErrors

Syntax int VLScgGetNumErrors(
VLScg_HANDLE iHandleP,
int * numMsgsP);

Description This function retrieves the number of messages queued to the handle and
returns it in numMsgsP. You can have only one int memory for this API.
Hence the code would be :

int errNo;
VLScg_HANDLE handle;
VLScgGetNumErrors(handle,&errNo);

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgGetErrorLength

Syntax int VLScgGetErrorLength(
VLScg_HANDLE iHandle,
int msgNum,

Argument Description

iHandleP The pointer to the instance handle for this library.

numMsgsP (OUT) The number of messages queued to the handle.

VLScgGetNumErrors Error Codes

Error Code Description

VLScg_NO_RESOURCES If no resources are available.

VLScg_FAIL If operation failed.
146 Sentinel LM Programmer’s Reference Manual

Functions Which Retrieve or Print Errors
int errLenP);

Description This function retrieves the length of message # msgNum recorded in the
handle. It includes the space required for NULL termination.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgGetErrorMessage

Syntax int VLScgGetErrorMessage(
VLScg_HANDLE iHandle,
char *msgBuf,
int bufLen);

Description This function retrieves the oldest error queued to the handle, and copies a
maximum of bufLen bytes to msgBuf as a null-terminated string. msgBuf is a

Argument Description

iHandle The instance handle for this library.

msgNum The number of the message whose length is to be queried.

errLenP The length of the message identified by msgNum.

VLScgGetErrorLength Error Codes

Error Code Description

VLScg_NO_RESOURCES If no resources are available.

VLScg_FAIL If operation failed.

Argument Description

iHandle The instance handle for this library.

msgBuf
(OUT)

A user allocated buffer into which the reference message
will be copied.

bufLen The byte length of the message copied into msgBuf.
Sentinel LM Programmer’s Reference Manual 147

Chapter 4 – License Code Generation API
user allocated buffer and must be bufLen bytes in length. Upon successful
completion of this function, the message retrieved will have been removed
from the queue.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgPrintError

Syntax int VLScgPrintError(
VLScg_HANDLE iHandle,
FILE *file);

Description This function writes the accumulated errors to the specified file.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgGetErrorMessage Error Codes

Error Code Description

VLScg_NO_RESOURCES If no resources are available.

VLScg_FAIL If operation failed.

Argument Description

iHandle The instance handle for this library.

file File pointer.

VLScgPrintError Error Codes

Error Code Description

VLScg_NO_RESOURCES If no resources are available.

VLScg_FAIL If operation failed.
148 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Functions for Setting the Fields in CodeT Struct

The following table summarizes the functions used to set flags and data
fields of the codeT struct.

Note: The sequence of input is very important for the VLScgAllow functions and
VLScgSet functions. You need to use the Allow function first to check the
differential integrity and syntax of the field value, before using the Set
function. The Set function will put it in the correct structure and format.

Functions of the CodeT Struct

Function Description

VLScgSetCodeLength Sets the license code length.

VLScgAllowFeatureName
VLScgSetFeatureName

Sets the name of the feature to be licensed.

VLScgAllowFeatureVersion
VLScgSetFeatureVersion

Sets the version number to be licensed.

VLScgAllowLicenseType
VLScgSetLicenseType

Controls the license type.

VLScgAllowTrialLicFeature
VLScgSetTrialDaysCount

Sets the number of trial days.

VLScgAllowAdditive
VLScgSetAdditive

Sets the license to exclusion or additive.

VLScgAllowKeyLifeUnits
VLScgSetKeyLifetimeUnits

Sets unit of time used to specify time
between license renewals.

VLScgAllowStandAloneFlag
VLScgAllowNetworkFlag
VLScgSetStandAloneFlag

Sets whether license will be for stand-alone
or network computer.

VLScgAllowLogEncryptLevel
VLScgSetLogEncryptLevel

Controls the network license encryption
level for the license server’s usage log file.
Sentinel LM Programmer’s Reference Manual 149

Chapter 4 – License Code Generation API
VLScgAllowSharedLic/
VLScgAllowTeamCriteria
VLScgSetSharedLicType/
VLScgSetTeamCriteria

• Enables shared licenses and sets sharing
criteria for non-capacity license.

• Enables team licenses and sets team cri-
teria for capacity license.

VLScgAllowShareLimit/
VLScgAllowTeamLimit
VLScgSetShareLimit/
VLScgSetTeamLimit

• Sets the number of users that can share a
non-capacity license.

• Sets the number of team members that
can share a token in case of capacity
license.

VLScgAllowCommuterLicense
VLScgSetCommuterLicense

Enables commuter licenses to be checked
out.

VLScgAllowNumKeys
VLScgSetNumKeys

Sets the number of concurrent licenses
allowed.

VLScgAllowLockModeQuery
VLScgSetClientServerLockMode

Sets locking mode for the license server
computer. Installs client server lock mode in
codeP.

VLScgAllowRedundantFlag
VLScgSetRedundantFlag

Controls whether the license will be used
with redundant license servers.

VLScgAllowMajorityRuleFlag
VLScgSetMajorityRuleFlag

Controls whether the majority of redundant
license servers must be running.

VLScgAllowMultipleServerInfo
VLScgSetNumServers

Fields for information on various license
servers.

VLScgAllowServerLockInfo
VLScgSetServerLockInfo1

Sets license server primary locking code.
Installs license server lock code in primary
lock.

VLScgSetServerLock
Mechanism1

Sets license server primary fingerprint
criteria. Installs license server's fingerprint
criteria in primary lock.

VLScgSetServerLock
Mechanism2

Sets license server secondary fingerprint
criteria. Installs license server's fingerprint
criteria in secondary lock.

Functions of the CodeT Struct (Continued)

Function Description
150 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
VLScgSetServerLockInfo2 Sets license server secondary locking code.
Installs server lock code in secondary lock.

VLScgAllowLockMechanism
VLScgSetClientLockMechanism

Sets client’s fingerprint criteria.

VLScgAllowClientLockInfo
VLScgSetClientLockInfo

Sets the client locking code.

VLScgSetNumClients Sets the number of client locking codes to
be specified.

VLScgAllowClockTamperFlag
VLScgSetClockTamperFlag

Controls action on detection of clock being
set back on the machine.

VLScgAllowOutLicType
VLScgSetOutLicType

Sets the license output format.

VLScgSetLicType Sets the license type.

VLScgAllowHeldLic
VLScgSetHoldingCrit

Enables/disables license hold time and
determines where that hold time is
specified.

VLScgAllowCodegenVersion
VLScgSetCodegenVersion

Sets the version of license codes to generate.
Checks if the current license code setting
allows multiple features.

VLScgAllowMultiKey
VLScgSetKeyType

Controls whether a license will be single or
multi-feature.

VLScgAllowSecrets
VLScgSetSecrets
VLScgSetNumSecrets

Sets the value of the specified challenge-
response secrets.
Sets the total number of secrets for the
challenge-response.

VLScgAllowVendorInfo
VLScgSetVendorInfo

Sets vendor-defined information in the
license.

VLScgAllowKeysPerNode
VLScgSetKeysPerNode

Sets the number of license tokens per node
for the specified number of clients.

Functions of the CodeT Struct (Continued)

Function Description
Sentinel LM Programmer’s Reference Manual 151

Chapter 4 – License Code Generation API
VLScgAllowSiteLic
VLScgSetSiteLicInfo
VLScgSetNumSubnets

Sets address of subnets licensed application
will be restricted to.
Sets the number of subnets the licensed
application is restricted to.

VLScgAllowNumFeatures
VLScgSetNumFeatures

Sets the number of features.

VLScgAllowSoftLimit
VLScgSetSoftLimit

Sets soft limit number.

VLScgAllowKeyHoldUnits
VLScgSetKeyHoldtimeUnits

Sets units of time to be used to specify
license hold time.

VLScgAllowKeyLifetime
VLScgSetKeyLifetime

Sets time between license renewals.

VLScgAllowKeyHoldtime
VLScgSetKeyHoldtime

Sets the time a license will be held.

VLScgAllowLicBirth
VLScgSetLicBirthMonth
VLScgSetLicBirthDay
VLScgSetLicBirthYear

Sets the month of the license start date (the
month should be specified in the range of 0-
11). Sets the day of the license start date.
Sets the year of the license start date.

VLScgAllowLicExpiration
VLScgSetLicExpirationMonth
VLScgSetLicExpirationDay
VLScgSetLicExpirationYear

Sets month license expires.The months
should be specified in the range of 0-11.
Sets day month the license expires.
Sets the year the license expires.

VLScgSetNumericType Sets the value of numeric type.

VLScgSetLoadSWLicFile Sets and loads the software license file
(lscgen.lic).

Functions of the CodeT Struct (Continued)

Function Description
152 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
VLScgSetCodeLength

Syntax int VLScgSetCodeLength(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

Description Sets the license code length to short or long.

License codes are 10 characters or longer uppercase alphanumeric or all-
numeric strings. The code generator will generate long, short or short,
numeric license codes.

■ Short codes contain less information than the long code and cannot
support certain licensing option. However, they have the advantage of
being easier to generate and easier to communicate to end users.

■ Long codes contain as many characters as needed.

■ Short, numeric codes generate numeric strings only and requires
minimal information from the user. This code contains the least
information.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Flag values are used to set the code_type member of codeT
struct. Legal values are:
• VLScg_SHORT_CODE_STRING = “0”
• VLScg_LONG_CODE_STRING = “1”
• VLScg_SHORT_NUMERIC_CODE = “2”
Sentinel LM Programmer’s Reference Manual 153

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowFeatureName

Syntax int VLScgAllowFeatureName(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetCodeLength Error Codes

Error Code Description

VLScg_INVALID_INPUT If either codeP or flag are NULL.

VLScg_INVALID_INT_TYPE Value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_SHORT_CODE_STRING.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than
VLScg_LONG_CODE_STRING.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
154 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
VLScgSetFeatureName

Syntax int VLScgSetFeatureName(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description A feature name can represent a single executable file, multiple executable
files, or a portion (a function) of an executable file. A feature name may be a
maximum of 11 ASCII characters for short license codes and a maximum of
24 for long license codes and two for short, numeric license codes and multi-
feature license codes.

Note: All applications must have a name by which they will be identified.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Any printable ASCII text except #.

VLScgSetFeatureName Error Codes

Error Code Description

VLScg_NO_FEATURE_NAME If the name is NULL.

VLScg_RESERV_STR_ERROR If the string is a reserved string.

VLScg_INVALID_CHARS If the string characters are not printable.

VLScg_EXCEEDS_MAX_VALUE Returned if the length of string passed
exceeds the maximum length of 24.
Sentinel LM Programmer’s Reference Manual 155

Chapter 4 – License Code Generation API
VLScgAllowFeatureVersion

Syntax int VLScgAllowFeatureVersion
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetFeatureVersion

Syntax int VLScgSetFeatureVersion(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description Version number is optional. Not supported for short license codes.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Any printable ASCII text except #. Maximum of 11 characters.
156 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowLicenseType

Syntax int VLScgAllowLicenseType(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetLicenseType

Syntax int VLScgSetLicenseType(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

VLScgSetFeatureVersion Error Codes

Error Code Description

VLScg_RESERV_STR_ERROR If the string is a reserved string.

VLScg_INVALID_CHARS If the string characters are not printable.

VLScg_EXCEEDS_MAX_
VALUE

If string exceeds maximum number of
characters. Maximum length of the version is 11
characters.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
Sentinel LM Programmer’s Reference Manual 157

Chapter 4 – License Code Generation API
Description Controls the license type for non-trial and trial licenses.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowTrialLicFeature

Syntax int VLScgAllowTrialLicFeature(
VLScg_HANDLE iHandle,
codeT *codeP);

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Flag is used to set the code_type member of codeT struct.
The values are:
• VLScg_NORMAL_LIC_STRING - Non-trial license = “0”
• VLScg_TRIAL_LIC_STRING - Trial license = “1”

VLScgSetLicenseType Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds VLScg_TRIAL_LIC_STRING.

VLScg_LESS_THAN_MIN_VALUE If value is lower than
VLScg_NORMAL_LIC_STRING

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
158 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetTrialDaysCount

Syntax int VLScgSetTrialDaysCount(
VLScg_HANDLE iHandle,
codeT *codeP,
char *daysStr);

Description Sets the number of trial days to the count specified by the daysStr parameter.

The count string defines a window of time during which the application can
run after the first time the license is requested.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, a spe-
cific error code is returned indicating the reason for failure. For a complete
list of the error codes, see Appendix D, “Error and Result Codes for License
Generation Functions,” on page 415.

VLScgAllowAdditive

Syntax int VLScgAllowAdditive(
VLScg_HANDLE iHandle,
codeT *codeP);

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

daysStr String representing the number of days to use in a trial
period.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
Sentinel LM Programmer’s Reference Manual 159

Chapter 4 – License Code Generation API
Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetAdditive

Syntax int VLScgSetAdditive(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

Description This function determines how this license will interact with a license
already installed for this feature and version. If a license is defined as exclu-
sive, it will override an existing license for the same feature and version. If a
license is additive, its number of users licensed for the feature and version is
added to an existing installed license.

Note: An additive license can’t be added on an exclusive license.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag The value of flag indicates whether the license to be
generated is additive/exclusive. The legal values are:
• VLScg_ADDITIVE = “0”
• VLScg_EXCLUSIVE = “1”

VLScgSetAdditive Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds VLScg_EXCLUSIVE.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than VLScg_ADDITIVE.
160 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowKeyLifetime

Syntax int VLScgAllowKeyLifetime(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetKeyLifetime

Syntax int VLScgSetKeyLifetime(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description A license must be renewed by the application on a regular schedule or the
license will be reclaimed. This function specifies the number of minutes
between renewals. Maximum and granularity depends on
VLScgSetKeyLifetimeUnits.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Absolute value in minutes of license lifetime. Maximum
depends on lifetime units set by VLScgSetKeyLifetimeUnits.
See “VLScgSetKeyLifetimeUnits” on page 213.
Sentinel LM Programmer’s Reference Manual 161

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowStandAloneFlag

Syntax int VLScgAllowStandAloneFlag(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetKeyLifetime Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If information is a non-negative integer.

VLScg_NOT_MULTIPLE If value is not a correct multiple.

VLScg_EXCEEDS_MAX_VALUE If value exceeds 3.

VLScg_LESS_THAN_MIN_VALUE If value is less than or equal to 0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
162 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
VLScgAllowNetworkFlag

Syntax int VLScgAllowNetworkFlag(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetStandAloneFlag

Syntax int VLScgSetStandAloneFlag(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

Description Sets whether license will be for stand-alone or network computer.

Stand-alone and network licenses cannot be used interchangeably.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Flag values are used to set the standalone_flag of codeT
struct. Legal values are:
• VLScg_NETWORK_STRING = “0”
• VLScg_STANDALONE_STRING = “1”
Sentinel LM Programmer’s Reference Manual 163

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowLogEncryptLevel

Syntax int VLScgAllowLogEncryptLevel(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetLogEncryptLevel

Syntax int VLScgSetLogEncryptLevel(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

VLScgSetStandAloneFlag Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_STANDALONE_STRING.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than
VLScg_NETWORK_STRING.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
164 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Description Controls the encryption level to the network licenses for the license server’s
usage log file.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowSharedLic/ VLSAllowTeamCriteria

Syntax In case of non-capacity license:

int VLScgAllowSharedLic(
VLScg_HANDLE iHandle,
codeT *codeP);

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Allowed value are:
• “0”
• “1”
• “2”
• “3”
• “4”

VLScgSetLogEncryptLevel Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not a decimal number.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MAX_ENCRYPTION_LEVEL.

VLScg_LESS_THAN_MIN_
VALUE

If value is lower than
VLScg_NO_ENCRYPTION.
Sentinel LM Programmer’s Reference Manual 165

Chapter 4 – License Code Generation API
In case of capacity license:

int VLScgAllowTeamCriteria(
VLScg_HANDLE iHandle,
codeT *codeP);

Note: We recommend you use VLScgAllowSharedLic for non-capacity license and
VLScgAllowTeamCriteria for capacity license.

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetSharedLicType/ VLScgSetTeamCriteria

Syntax In case of non-capacity license:

int VLScgSetSharedLicType(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

In case of capacity license:

int VLScgSetTeamCriteria(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
166 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Description The concept of shared license is only applicable to network licenses. If
sharing is enabled a user can use multiple instances of a protected
application without consuming more than one license. Call this function
enables sharing and also sets which criteria to use to determine eligibility of
the user to share a license already granted to an existing user: user name, x-
display ID, host name, or vendor-defined.

Sharing allows multiple copies of your application to run at the same time
without using more than one license.

Tip: We recommend you use VLScgSetSharedLicType for non-capacity license and
VLScgSetTeamCriteria for capacity license.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag This flag enables shared licenses and specifies the sharing
criteria. Legal values are:
• VLScg_NO_SHARING_STRING = “0”
• VLScg_USER_SHARING_STRING = “1”
• VLScg_HOSTNAME_SHARING_STRING = “2”
• VLScg_XDISPLAY_SHARING_STRING = “3”
• VLScg_VENDOR_SHARING_STRING = “4” - Vendor

defined / customized. Need to customize the client library
for this.
Sentinel LM Programmer’s Reference Manual 167

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowShareLimit/ VLScgAllowTeamLimit

Syntax In case of non-capacity license:

int VLScgAllowShareLimit(
VLScg_HANDLE iHandle,
codeT *codeP);

In case of capacity license:

int VLScgAllowTeamLimit(
VLScg_HANDLE iHandle,
codeT *codeP);

Tip: We recommend you use VLScgAllowShareLimit for non-capacity license and
VLScgAllowTeamLimit for capacity license.

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the

VLScgSetSharedLicType/ VLScgSetTeamCriteria Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_VENDOR_SHARING_STRING.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than
VLScg_NO_SHARING_STRING.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
168 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetShareLimit/VLScgSetTeamLimit

Syntax In case of non-capacity license:

int VLScgSetShareLimit(
VLScg_HANDLE iHandle,
codeT *codeP,
char *decimalNUM);

In case of capacity license:

int VLScgSetTeamLimit(
VLScg_HANDLE iHandle,
codeT *codeP,
char *decimalNUM);

Description If sharing is set, multiple users or a single user using multiple instances of
your application, can share a license.

This function restricts the number of clients who can share a license. The
decimalNUM limit forces the issue of a new license, when the sharing limit
has been reached for a non-capacity license or when the team limit has been
reached for a capacity license.

Tip: We recommend you use VLScgSetShareLimit for non-capacity license and
VLScgSetTeamLimit for capacity license.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

decimalNUM Controls the number of users/clients who can share a single
license. Use a decimal numeric value setting to control the
number of users that can share a license. NOLIMITSTR for
unlimited.
Sentinel LM Programmer’s Reference Manual 169

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowCommuterLicense

Syntax int VLScgAllowCommuterLicense(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetCommuterLicense

Syntax int VLScgSetCommuterLicense(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

VLScgSetShareLimit/ VLScgSetTeamLimit Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
170 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Description Enables commuter licenses.

This function is used to generate license use authorizations for traveling cli-
ents. Commuter licensing allows end users to “check out” an authorization
from a network served license group and “check it in” when they are done
using the application.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowNumKeys

Syntax int VLScgAllowNumKeys(
VLScg_HANDLE iHandle,
codeT *codeP);

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Valid values are:
• VLScg_NOT_ISSUE_COMMUTER_CODES_STRING = “0”
• VLScg_ISSUE_COMMUTER_LICENSE_CODE_STRING = “1”

VLScgSetCommuterLicense Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_ISSUE_COMMUTER_CODES_STRING

VLScg_LESS_THAN_MIN_
VALUE

If value is lower than
VLScg_NOT_ISSUE_COMMUTER_CODES_
STRING.
Sentinel LM Programmer’s Reference Manual 171

Chapter 4 – License Code Generation API
Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetNumKeys

Syntax int VLScgSetNumKeys(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,
int num);

Description Sets the number of concurrent licenses allowed. (Network license only.)

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets the number of concurrent licenses: should be from 0 to
NOLIMITSTR for no limit.

num Should be 0 in case of single feature and from 0 to
“no_of_features -1” in case of multi-feature.
172 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowLockModeQuery

Syntax int VLScgAllowLockModeQuery(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetNumKeys Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If value of info exceeds maximum
number of license tokens allowed.
Maximum value for long codes is 32766
and maximum value for short codes is
254.

VLScg_LESS_THAN_MIN_VALUE If value of info is less than 0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
Sentinel LM Programmer’s Reference Manual 173

Chapter 4 – License Code Generation API
VLScgSetClientServerLockMode

Syntax int VLScgSetClientServerLockMode(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

Description Sets whether license server is locked, clients and license server are both
locked, only clients are locked, or neither license server nor clients are
locked. Validates the value of flag and installs it in the license code structure.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag The flag values are:
• VLScg_FLOATING_STRING - License server is locked = “0”
• VLScg_BOTH_NODE_LOCKED_STRING - Clients and license

server are locked = “1”
• VLScg_DEMO_MODE_STRING - Trial license (no locking) =

“2”
• VLScg_CLIENT_NODE_LOCKED_STRING - Only clients are

locked = “3”

VLScgSetClientServerLockMode Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If the value of flag exceeds maximum
of 3.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than the
minimum of 0.
174 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
VLScgAllowRedundantFlag

Syntax int VLScgAllowRedundantFlag(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetRedundantFlag

Syntax int VLScgSetRedundantFlag(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

Description Controls whether the license will be used with redundant license servers.

Redundancy allows the total number of licenses to remain available to the
enterprise even if one or more license servers fail. License balancing allows
the developer’s end user to set up an initial distribution of license tokens
among different sites. The Sentinel LM license servers will automatically

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Valid values are:
• VLScg_NON_REDUNDANT_CODE_STRING - Non-redun-

dant license = “0”
• VLScg_REDUNDANT_CODE_STRING - Redundant license =

“1”
Sentinel LM Programmer’s Reference Manual 175

Chapter 4 – License Code Generation API
adjust the distribution of the licenses to match the actual usage pattern of
the license tokens across the enterprise.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowMajorityRuleFlag

Syntax int VLScgAllowMajorityRuleFlag(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetMajorityRuleFlag

Syntax int VLScgSetMajorityRuleFlag(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

VLScgSetRedundantFlag Error Codes

Error Code Description

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_REDUNDANT_CODE_STRING.

VLScg_LESS_THAN_MIN_
VALUE

If value is less than
VLScg_NON_REDUNDANT_CODE_STRING.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
176 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Description Controls whether the majority of redundant license servers must be
running.

If the number of redundant license servers running is less than half of the
number of license servers specified in the license file, then all servers will
stop servicing all old and new clients. For example, if 7 redundant license
servers are specified, at least 4 of them must be running to satisfy the
majority rule.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Valid values are:
• VLScg_MAJORITY_RULE_FOLLOWS_STRING - Sets the

majority_rule_flag = “1”
• VLScg_MAJORITY_RULE_NOT_FOLLOWS_STRING - Unsets

the majority_rule_flag = “0”

VLScgSetMajorityRuleFlag Error Flag

Error Code Description

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MAJORITY_RULE_FOLLOWS_
STRING

VLScg_LESS_THAN_MIN_VALUE If value is lower than
VLScg_MAJORITY_RULE_NOT_FOLLOWS_
STRING.
Sentinel LM Programmer’s Reference Manual 177

Chapter 4 – License Code Generation API
VLScgAllowMultipleServerInfo

Syntax int VLScgAllowMultipleServerInfo(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetNumServers

Syntax int VLScgSetNumServers(
VLScg_HANDLE iHandle,
codeT *codeP
char *str);

Description This API sets the number of redundant servers. It can be called for long
codes only also the number of servers should be odd. This sets the number of
servers for redundancy.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

str Number of servers
178 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowServerLockInfo

Syntax int VLScgAllowServerLockInfo(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetServerLockInfo1

Syntax int VLScgSetServerLockInfo1(
VLScg_HANDLE iHandle,
codeT *codeP,
char *lockCode,

VLScgSetNumServers Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not numeric

VLScg_EXCEEDS_MAX_VALUE If value exceeds the maximum number of
license servers. Maximum number of license
servers can be 11.

VLScg_LESS_THAN_MIN_VALUE If the value is less than minimum number of
license servers that is equal to or less than
0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
Sentinel LM Programmer’s Reference Manual 179

Chapter 4 – License Code Generation API
int num);

Description Installs the value of lockCode in the code structure field
server_lock_info1[num] to set the primary locking code.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

lockCode The lock code to be checked and set. Lock code should be an 8-
character hex string (32-bit numeric locking code), optionally
preceded by “0x.”

num Position in server_lock_info1 where lockCode is stored starting
from 0 to num_servers-1 where num_servers is set using
VLScgSetNumServers.
• server_lock_info1 is an array of 11 elements storing the pri-

mary locking codes for 11 servers.

VLScgSetServerLockInfo1 Error Codes

Error Code Description

VLScg_INVALID_HEX_TYPE If value is not in hexadecimal format.

VLScg_EXCEEDS_MAX_VALUE If value exceeds the maximum number of
license servers. The value set using the API
VLScgSetNumServers

VLScg_LESS_THAN_MIN_VALUE If the value is less than minimum number of
license servers.
180 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
VLScgSetServerLockMechanism1

Syntax int VLScgSetServerLockMechanism1(
VLScg_HANDLE iHandle,
codeT *codeP,
char *criterion,
int server);

Description This function sets the criteria for the primary license server. Installs a license
server’s primary fingerprint criteria in the code structure. A fingerprint is
computed by selecting operating characteristics of the host system and
forming a mask with bits set corresponding to those characteristics. The dif-
ferent fingerprinting elements are defined in the VLScg_LOCK_ section of
lscgen.h, and includes criteria such as ID Prom, IP address, disk ID, etc. A
license server can be locked to either of two groups of fingerprints. The sec-
ond group will be tried if the first licensed fingerprint group fails to match
the license server’s fingerprint at the end-user site.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

criterion The lock code to install. Value should be in hex format.

server Position in array which is storing the primary locking criterias
of the 11 servers. Value 0 to num_servers where num_servers
is set using VLScgSetNumServers.

VLScgSetServerLockMechanism1 Error Codes

Error Code Description

VLScg_INVALID_HEX_TYPE If criterion is not in hexadecimal format.

VLScg_EXCEEDS_MAX_VALUE If number of server is too large. The value
set using the API VLScgSetNumServers.

VLScg_LESS_THAN_MIN_VALUE If the number of server is lower than
minimum.
Sentinel LM Programmer’s Reference Manual 181

Chapter 4 – License Code Generation API
For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgSetServerLockMechanism2

Syntax int VLScgSetServerLockMechanism2(
VLScg_HANDLE iHandle,
codeT *codeP,
char *criterion,
int server);

Description This function sets the criteria for the secondary license server. Installs a
license server’s secondary fingerprint criteria in the code structure. A finger-
print is computed by selecting operating characteristics of the host system
and forming a mask with bits set corresponding to those characteristics.
The different fingerprinting elements are defined in the VLScg_LOCK_ sec-
tion of lscgen.h, and includes criteria such as ID Prom, IP address, disk ID,
etc. A license server can be locked to either of two groups of fingerprints. The
second group will be tried if the first licensed fingerprint group fails to match
the license server’s fingerprint at the end-user site.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

criterion The lock code to install (in hex).

server Position in array which is storing the secondary locking
criterias of the 11 servers. Its value should also vary from 0 -
num_servers where num_servers is set using
VLScgSetNumServers.
182 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgSetServerLockInfo2

Syntax int VLScgSetServerLockInfo2(
VLScg_HANDLE iHandle,
codeT *codeP,
char *lockCode,
int num);

Description Installs the value of lockCode in the code structure field
server_lock_info2[num] to set the secondary locking code.

VLScgSetServerLockMechanism2 Error Codes

Error Code Description

VLScg_INVALID_HEX_TYPE If criterion is not in hexadecimal format.

VLScg_EXCEEDS_MAX_VALUE If number of server is too large. The value
set using the API VLScgSetNumServers.

VLScg_LESS_THAN_MIN_VALUE If the number of server is lower than
minimum.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

lockCode The lock code to be checked and set. Lock code should be an
8-character hex string (32-bit numeric locking code),
optionally preceded by “0x.”

num Position in server_lock_info2 where lockCode is stored
starting from 0 to num_servers-1 where num_servers is set
using VLScgSetNumServers.
• server_lock_info2 is an array of 11 elements storing the

secondary locking codes for 11 servers.
Sentinel LM Programmer’s Reference Manual 183

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowLockMechanism

Syntax int VLScgAllowLockMechanism(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetClientLockMechanism

Syntax int VLScgSetClientLockMechanism(
VLScg_HANDLE iHandle,
codeT *codeP,
char *criterion,

VLScgSetServerLockInfo2 Error Codes

Error Code Description

VLScg_INVALID_HEX_TYPE If value is not in hexadecimal format.

VLScg_EXCEEDS_MAX_VALUE If value is too large. The value set
using the API VLScgSetNumServers.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
184 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
int client_num);

Description Installs a client’s fingerprint criteria in the code structure. A fingerprint is
computed by selecting operating characteristics of the host system and
forming a mask with bits set corresponding to those characteristics. The dif-
ferent fingerprinting elements are defined in the VLScg_LOCK_ section of
lscgen.h, and includes criteria such as ID Prom, IP address, disk ID, etc.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowClientLockInfo

Syntax int VLScgAllowClientLockInfo(
VLScg_HANDLE iHandle,

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

criterion Mask defining which fields of machineID are to be used for
locking. Value should be in hex format.

client_num client_num is the position in the array storing the locking
mechanisms for the clients. The value will vary from 0 to
num_nl_clients where num_nl_clients is the number of
clients set using VLScgSetNumClients.

VLScgSetClientLockMechanism Error Codes

Error Code Description

VLScg_INVALID_HEX_TYPE If value is not in hexadecimal format.

VLScg_EXCEEDS_MAX_VALUE If value is too large. The value set using
the API VLScgSetNumClients.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.
Sentinel LM Programmer’s Reference Manual 185

Chapter 4 – License Code Generation API
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetClientLockInfo

Syntax int VLScgSetClientLockInfo(
VLScg_HANDLE iHandle,
codeT *codeP,
char *lockCode,
int num);

Description Sets the client locking code.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

lockCode This buffer is used to set the lock code information for clients.

num Number of clients: should be from 0 to maximum number of
clients specified -1.
num is the position in the array storing the locking codes for
the clients. The value will vary from 0 to num_nl_clients where
num_nl_clients is the number of clients set using
VLScgSetNumClients.
186 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgSetNumClients

Syntax int VLScgSetNumClients(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description Applications can be locked to specific client computers using locking codes
that uniquely identify those computers.

VLScgSetClientLockInfo Error Codes

Error Code Description

VLScg_INVALID_HEX_TYPE If value is not in hexadecimal format.

VLScg_EXCEEDS_MAX_VALUE If number is greater than num_nl_clients -
1. Number of node locked clients.

VLScg_LESS_THAN_MIN_VALUE If number is less than 0.

VLScg_INVALID_IP_TYPE If value is not in dot format.

VLScg_UNKNOWN_LOCK If the locking criteria is unknown.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Number of client locking codes to be specified.
Sentinel LM Programmer’s Reference Manual 187

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowClockTamperFlag

Syntax int VLScgAllowClockTamperFlag(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetClockTamperFlag

Syntax int VLScgSetClockTamperFlag(
VLScg_HANDLE iHandle,
codeT *codeP,

VLScgSetNumClients Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If input is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum number of 7
clients.

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
188 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
char *flag);

Description Controls action on detection of clock being set back on the machine.

Clock tamper check will only be done when the license server starts up, but
the license server will not exit on detection of tampering. Only those license
strings that specify they want the check will be denied if tampering is
detected. Other features will continue to be served by the license server. Even
if someone sets the clock back after starting the license server, and then
dynamically adds a tamper-sensitive license string, the license server will
detect it and throw the license string out. When the license server accepts a
license string at start-up but detects later that the clock has been set back, it
does not grant a license for the feature until the clock is reset to its correct
value.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Valid values are:
• VLScg_NO_CHECK_TAMPER_STRING - Do not check clock

tamper = “0”
• VLScg_CHECK_TAMPER_STRING - Check clock tamper =

“1”

VLScgSetClockTamperFlag Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not a decimal number.

VLScg_INVALID_RANGE If value is not in the range allowed.
Sentinel LM Programmer’s Reference Manual 189

Chapter 4 – License Code Generation API
VLScgAllowOutLicType

Syntax int VLScgAllowOutLicType(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetOutLicType

Syntax int VLScgSetOutLicType(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

Description Controls the type of license string generated. License output formats can be:
encrypted, expanded readable, and concise readable.

The license code contains all of the information that defines the license
agreement between you and your customer: how many users can run the
application at a time, whether the license will expire after a specific number
of days, whether the application can only run on a specific computer, and so

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Valid values are:
• VLScg_ENCRYPTED_STRING = “0”
• VLScg_EXPANDED_READABLE_STRING = “1”
• VLScg_CONCISE_READABLE_STRING = “2”
190 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
on. Encrypted license strings contain this information about the license
agreement, but cannot be read by your customers.

Concise readable license codes store information about the provisions of a
licensing agreement in readable form, such as plain text with white spaces
so that it is easily read (and understood) by the user.

The expanded readable license string, a string is appended to the numeric
values to specify what that numeric value stands for, e.g., 60_MINS implies
that 60 specifies the time in minutes. These strings do not appear in the con-
cise format, only a 60 appears in the concise readable license string, as
opposed to 60_MINS in the expandable readable format.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgSetLicType

Syntax int VLScgSetLicType(
VLScg_HANDLE iHandle,
codeT *codeP,
char *lictype);

VLScgSetOutLicType Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not a decimal number.

VLScg_INVALID_RANGE If value is not in the range allowed.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

lictype Set the type of license.
• VLScg_TRIAL_LIC_STRING = “1”
• VLScg_NORMAL_LIC_STRING = “0”
Sentinel LM Programmer’s Reference Manual 191

Chapter 4 – License Code Generation API
Description Sets the type of license to either trial or normal.

Trial licenses are relative time-limited licenses that use a trial period of 1 to
120 days. Notice, trial licenses do not start until the first time the applica-
tion is executed (as opposed to the time that the application is installed).

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowHeldLic

Syntax int VLScgAllowHeldLic(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetHoldingCrit

Syntax int VLScgSetHoldingCrit(
VLScg_HANDLE iHandle,
codeT *codeP,

VLScgSetLicType Error Codes

Code Description

VLScg_INVALID _LIC_TYPE If license type is not valid.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
192 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
char *flag);

Description This defines the criteria for determining the hold time for a license, and
controls whether or not held licenses are allowed for this feature. Hold time
provides a grace period after the license is released during which only the
original license requestor will be granted the license. Validates and installs
the value of the flag in the license code structure.

Returns The status code VLScg_SUCCESS is returned if successful Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag The flag is used to set the criteria for held licenses.
Values are:
• VLScg_HOLD_NONE_STRING = “0” - Held licenses not

allowed.
• VLScg_HOLD_VENDOR_STRING = “1” - Client API specifies

hold time.
• VLScg_HOLD_CODE_STRING = “2” - License code specifies

hold time.

VLScgSetHoldingCrit Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_HOLD_CODE_STRING.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than
VLScg_HOLD_NONE_STRING.
Sentinel LM Programmer’s Reference Manual 193

Chapter 4 – License Code Generation API
VLScgAllowCodegenVersion

Syntax int VLScgAllowCodegenVersion(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetCodegenVersion

Syntax int VLScgSetCodegenVersion(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

Description Sets the version of license codes to generate. Checks if the current license
code setting allow multiple features.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Sets the possible values for version_num flag.
194 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowCapacityLic

Syntax int VLScgAllowCapacityLic(
VLScg_HANDLE iHandle,
codeT *codeP);

Description Allows the application to check if capacity licensing is allowed or not. For
details on capacity licensing, see the Sentinel LM Developer's Guide.

Returns It will return the following return status:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgSetCodegenVersion Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
MAX_CODEGEN_VERSION.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgAllowCapacityLic Return Status

Return Value Description

0 Capacity licensing is not allowed.

1 Capacity licensing is allowed.
Sentinel LM Programmer’s Reference Manual 195

Chapter 4 – License Code Generation API
VLScgSetCapacityFlag

Syntax int VLScgSetCapacityFlag(
VLScg_HANDLE iHandle,
codeT *codeP
char *flag);

Description Specifies whether the license is a capacity license or not. Also sets the appro-
priate fields of codeT structure to make sure that it is:

■ A normal license and not a trial license

■ A network license and not a stand-alone license

■ Not a held license

■ Not a redundant license

■ Not a commuter license

■ License code format is “Encrypted” only.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Flag The value of flag is used to set the capacity_flag of codeT
struct. Legal values are-
• VLScg_CAPACITY_NONE_STRING
• VLScg_CAPACITY_NON_POOLED_STRING
• VLScg_CAPACITY_POOLED_STRING
196 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowCapacity

Syntax int VLScgAllowCapacity(
VLScg_HANDLE iHandle,
codeT *codeP);

Description Allows the application to check whether it is a capacity license or not.

Returns It will return the following return status:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgSetCapacityFlag Error Codes

Error Code Description

VLScg_SUCCESS Success

VLScg_INVALID_INT_TYPE If value is not numeric

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_CAPACITY_POOLED

VLScg_LESS_THAN_MIN_
VALUE

If value is lower than
VLScg_CAPACITY_NONE

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgAllowCapacity Return Status

Return Value Description

0 It is a non-capacity license.

1 It is a capacity license.
Sentinel LM Programmer’s Reference Manual 197

Chapter 4 – License Code Generation API
VLScgSetCapacityUnits

Syntax int VLScgSetCapacityUnits(
VLScg_HANDLE iHandle,
codeT *codeP,
char *units);

Definition Sets the capacity_units field of codeT struct.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

units Capacity specification units from 0 to 4. The values are:
• If capacity_units is 0, capacity shall be multiple of 1(s),

maximum 1022.
• If capacity_units is 1, capacity shall be multiple of 10(s),

maximum 10220.
• If capacity_units is 2, capacity shall be multiple of 100(s),

maximum 102200.
• If capacity_units is 3, capacity shall be multiple of 1000(s),

maximum 1022000.
• If capacity_units is 4, capacity shall be multiple of

10000(s), maximum 10220000.

VLScgSetCapacityUnits Error Codes

Error Code Description

VLScg_SUCCESS Success.

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_CAPACITY_UNITS_MAX_VALUE

VLScg_LESS_THAN_MIN_VALUE If value is less than
VLScg_CAPACITY_UNITS_MIN_VALUE
198 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgSetCapacity

Syntax int VLScgSetCapacity(
VLScg_HANDLE iHandle,
codeT *codeP,
char *capacity);

Definition Sets the capacity field of codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

capacity Controls the capacity
• If capacity_units is 0, capacity shall be multiple of 1(s),

maximum 1022.
• If capacity_units is 1, capacity shall be multiple of 10(s),

maximum 10220.
• If capacity_units is 2, capacity shall be multiple of 100(s),

maximum 102200.
• If capacity_units is 3, capacity shall be multiple of 1000(s),

maximum 1022000.
• If capacity_units is 4, capacity shall be multiple of

10000(s), maximum 10220000.
NOLIMITSTR or EMPTY(“/0”) String can be used to
specify infinite capacity.
Sentinel LM Programmer’s Reference Manual 199

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowMultiKey

Syntax int VLScgAllowMultiKey(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetKeyType

Syntax int VLScgSetKeyType(
VLScg_HANDLE iHandle,
codeT *codeP,

VLScgSetCapacity Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_NOT_MULTIPLE If value is not a correct multiple.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum.

VLScg_LESS_THAN_MIN_VALUE If value is lower than minimum.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
200 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
char *flag);

Description Controls whether a license will be single or multi-feature license code types.

Single Feature: Predefined short, numeric license codes where the license
code is for a single feature. Notice, if you select Predefined-Single Feature,
the feature name must be no more than 2 numeric digits. Most of the
attributes are already defined for you and cannot be modified.

Multi Feature: Predefined short, numeric license types where multiple fea-
tures (value between 2 - 11) can be placed into a single license code. Notice,
if you select Predefined-Multi Feature, the feature name must be no more
than 2 numeric digits. Most of the attributes are already defined for you and
cannot be modified.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Flag used to set the code_type member of codeT struct. The
values are:
• VLScg_SINGLE_KEY_STRING = “0”
• VLScg_MULTI_KEY_STRING = “1”

VLScgSetKeyType Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not a decimal number.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MULTI_KEY_STRING.

VLScg_LESS_THAN_MIN_
VALUE

If value is lower than
VLScg_SINGLE_KEY_STRING.
Sentinel LM Programmer’s Reference Manual 201

Chapter 4 – License Code Generation API
VLScgAllowSecrets

Syntax int VLScgAllowSecrets(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetSecrets

Syntax int VLScgSetSecrets(
VLScg_HANDLE iHandle,
codeT *codeP,
char *valu,
int num);

Description Sets the value of the specified challenge-response secrets.

Both the application and the license contain data known as secrets. When
an application wishes to challenge, it generates a random text string, which
is passed as the challenge value to the license server. In response to this chal-
lenge value, the license server examines the software license to determine

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

valu Any printable ASCII text.

num Number of secrets: should be from 0 to num_secrets -1. num
is the position in the array storing the secrets.
The value varies from 0 to num_secrets-1, where num_secrets
is set using VLScgSetNumSecrets
202 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
the secret and computes the corresponding answer. The result is then
passed back to the client application as the response to the challenge.

The purpose of the challenge is to verify that there is a valid license present.
Even a tampered license server cannot respond correctly to the challenge.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgSetNumSecrets

Syntax int VLScgSetNumSecrets(
VLScg_HANDLE iHandle,
codeT *codeP,
char *valu);

Description Sets the total number of secrets for the challenge-response mechanism.

Up to seven secret text strings can be specified, each up to twelve characters
long. The secrets are encrypted within the license itself, with only the license
server knowing how to decrypt the secrets. The license server will then com-

VLScgSetSecrets Error Codes

Error Code Description

VLScg_INVALID_CHARACTERS If string is not valid.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum. The
value set by VLScgSetNumSecrets

VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

valu This value sets the number of secrets.
Sentinel LM Programmer’s Reference Manual 203

Chapter 4 – License Code Generation API
pute an authentication response when challenged by a client to confirm its
identity.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowVendorInfo

Syntax int VLScgAllowVendorInfo
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetVendorInfo

Syntax int VLScgSetVendorInfo(
VLScg_HANDLE iHandle,
codeT *codeP,

VLScgSetNumSecrets Error Codes

Error Code Description

VLScg_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MAX_NUM_SECRETS.

VLScg_LESS_THAN_MIN_VALUE If value is lower than 0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
204 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
char *info);

Description Sets vendor-defined information in the license. Supported only for long
license codes.

Any piece of information can be encoded into a license code. The
information can be retrieved later through a client library function call. This
capability is useful for keeping track of distributors or implementing a
variety of licensing schemes.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowKeysPerNode

Syntax int VLScgAllowKeysPerNode(
VLScg_HANDLE iHandle,
codeT *codeP);

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Any printable ASCII text except #. Maximum of 395
characters.

VLScgSetVendorInfo Error Codes

Error Code Description

VLScg_INVALID_CHARS If string is not valid.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum.

VLScg_LESS_THAN_MIN_
VALUE

If the value is lower than minimum.
Sentinel LM Programmer’s Reference Manual 205

Chapter 4 – License Code Generation API
Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetKeysPerNode

Syntax int VLScgSetKeysPerNode(
VLScg_HANDLE iHandle,
codeT *codeP,
char *keys,
int num);

Description This function sets the number of keys (license tokens) per node for the speci-
fied number of clients.

For each client locked and client&server locked node, the number of copies
running on each computer is controlled. This is an extra per-host restriction
in addition to the overall number of licenses.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

keys Used to set the number of keys per node. Give any decimal
value. Should be from 0. Give NOLIMITSTR for no limit.

num Position of client in the array of clients: should be from 0 to
the maximum number of clients -1.
206 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowSiteLic

Syntax int VLScgAllowSiteLic(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetSiteLicInfo

Syntax int VLScgSetSiteLicInfo(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,
int num);

VLScgSetKeysPerNode Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If number is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If number is greater than num_nl_clients -1.
num_nl_clients is a field of CodeT structure
storing the number of clients.

VLScg_LESS_THAN_MIN_VALUE If number is less than 0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
Sentinel LM Programmer’s Reference Manual 207

Chapter 4 – License Code Generation API
Description Sets subnet address. See “VLScgSetNumSecrets” on page 203.

Specifies the number of subnets used for site licensing.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgSetNumSubnets

Syntax int VLScgSetNumSubnets(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Set the subnet address. You can use wildcard (e.g., *.123.*.28)
to specify a range.

num num is the position of subnet in the array maintaining the
subnet info.The value varies from 0 to num_subnets-1 where
num_subnets is an element of CodeT struct set using
VLScgSetNumSubnets.

VLScgSetSiteLicInfo Error Codes

Error Code Description

VLScg_INVALID_RANGE If value is not in the range allowed and if value
is not a valid character.
208 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Description Sets the number of subnets the licensed application can run on. To set
actual site addresses, use VLScgSetSiteLicInfo*.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowNumFeatures

Syntax int VLScgAllowNumFeatures(
VLScg_HANDLE iHandle,
codeT *codeP);

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets the number of subnets: Should be from 1 to
VLScg_MAX_NUM_SUBNETS whose value is 7. 0 is a special
value which means no site licensing.

VLScgSetNumSubnets Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If input is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If num is greater than codeP to
num_subnets.

VLScg_LESS_THAN_MIN_VALUE If num is less than 0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
Sentinel LM Programmer’s Reference Manual 209

Chapter 4 – License Code Generation API
Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetNumFeatures

Syntax int VLScgSetNumFeatures(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag);

Description Sets the number of features.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Sets the flag for number of features in case of multi-feature.

VLScgSetNumFeatures Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If input is not a decimal number.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MAX_NUM_FEATURES.

VLScg_LESS_THAN_MIN_VALUE If value is lower than
VLScg_MIN_NUM_FEATURES.
210 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
VLScgAllowSoftLimit

Syntax int VLScgAllowSoftLimit(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetSoftLimit

Syntax int VLScgSetSoftLimit(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description The soft limit number defines a threshold at which a warning can be issued
that the maximum number of licenses is being approached. Must be less
than the maximum number of users (the hard limit).

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets soft limit: should be from 0 to NOLIMITSTR for no limit.
NOLIMSTR is not allowed if the license is a commuter license.
Sentinel LM Programmer’s Reference Manual 211

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowKeyLifeUnits

Syntax int VLScgAllowKeyLifeUnits(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetSoftLimit Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If information is not a non-negative
integer.

VLScg_EXCEEDS_MAX_VALUE If information exceeds maximum number
of license tokens allowed. Maximum value
for long codes is 32766 and maximum
value for short codes is 254.

VLScg_LESS_THAN_MIN_VALUE If information is less than 0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
212 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
VLScgSetKeyLifetimeUnits

Syntax int VLScgSetKeyLifetimeUnits(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description This function specifies the units of time used to specify the time between
renewals. A license must be renewed by the application on a regular sched-
ule or the license will be reclaimed. See “VLScgSetKeyLifetime” on
page 161.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Lifetime specification units of license tokens: from 0 to 3. The
values are:
• “0” - Multiple of 1 minute(s), maximum 15 minutes.
• “1” - Multiple of 10 minute(s), maximum 150 minutes.
• “2” - Multiple of 30 minute(s), maximum 450 minutes.
• “3” - Multiple of 60 minute(s), maximum 900 minutes.

VLScgSetKeyLifetimeUnits Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If information is a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If value exceeds 3.

VLScg_LESS_THAN_MIN_VALUE If value is less than 0.
Sentinel LM Programmer’s Reference Manual 213

Chapter 4 – License Code Generation API
VLScgAllowKeyHoldUnits

Syntax int VLScgAllowKeyHoldUnits(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetKeyHoldtimeUnits

Syntax int VLScgSetKeyHoldtimeUnits(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description Network licenses may be held for a time when released by a specific user.
During that time only the original requestor of the license can be granted
the license again. This function sets the units of time used to specify the hold
time.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Hold time specification units of license tokens: from 0 to 3.
The values are:
• “0” - Multiple of 1 minute(s), maximum 15 minutes
• “1” - Multiple of 10 minute(s), maximum 150 minutes.
• “2” - Multiple of 30 minute(s), maximum 450 minutes.
• “3” - Multiple of 60 minute(s), maximum 900 minutes.
214 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowKeyHoldtime

Syntax int VLScgAllowKeyHoldtime(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetKeyHoldtimeUnits Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If information is a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If value exceeds 3.

VLScg_LESS_THAN_MIN_VALUE If value is less than 0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
Sentinel LM Programmer’s Reference Manual 215

Chapter 4 – License Code Generation API
VLScgSetKeyHoldtime

Syntax int VLScgSetKeyHoldtime(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description Network licenses may be held for a time when released by a specific user.
During that time only that user can reclaim the license. This function speci-
fies the hold time. This function sets the value codeP->key_holdtime to the
value of info and performs small checks to validate user input.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Absolute values in minutes. Maximum depends on units set by
VLScgSetKeyHoldtimeUnits. NOLIMITSTR for infinite hold time.

VLScgSetKeyHoldtime Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If information is a non-negative integer.

VLScg_NOT_MULTIPLE If value is not a correct multiple.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed hold
time.

VLScg_LESS_THAN_MIN_VALUE If value is less than 0.
216 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
VLScgAllowLicBirth

Syntax int VLScgAllowLicBirth(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetLicBirthMonth

Syntax int VLScgSetLicBirthMonth(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description Sets the month of the license start date. The license start month should be
specified in the range of 0-11. VLScgSetLicBirthMonth is not applicable if
year is infinite.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets the month of year to 0-11 or Jan.-Dec.
Sentinel LM Programmer’s Reference Manual 217

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgSetLicBirthDay

Sets the day of the license start date.

Syntax int VLScgSetLicBirthDay(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description Sets the day of the license start date. Not applicable if year has been set to
infinite.

VLScgSetLicBirthMonth Error Codes

Error Code Description

VLScg_INVALID_CHARACTERS If not a valid string.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed month
(exceeds 12).

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets the day of the month (1-31).
218 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgSetLicBirthYear

Syntax int VLScgSetLicBirthYear(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description Sets the year of the license start date. Not applicable if year is infinite.

VLScgSetLicBirthDay Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_INVALID_DATE If value is not valid for the month.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed day.

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Enter year in 4 digits (e.g., 2003) to avoid year 2000 problem.
Sentinel LM Programmer’s Reference Manual 219

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgAllowLicExpiration

Syntax int VLScgAllowLicExpiration(
VLScg_HANDLE iHandle,
codeT *codeP);

Returns The VLScgAllowXXX function tests whether the corresponding VLScg-
SetXXX should be called. If VLScgAllowXXX returns 1 then the
corresponding VLScgSetXXX function can be called. Otherwise, it will
return 0 as false.

VLScgSetLicBirthYear Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_INVALID_YEAR If year is invalid.

VLScg_INVALID_BIRTH_YEAR If year is less than 2003.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed year
that is 2130.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.
220 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
VLScgSetLicExpirationMonth

Syntax int VLScgSetLicExpirationMonth(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description Sets month of date license expires. The license expiration month should be
specified in the range of 0-11. VLScgSetLicExpirationMonth is not applica-
ble if year is infinite.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets the month of year: 0 -11 or Jan.-Dec.

VLScgSetLicExpirationMonth Error Codes

Error Code Description

VLScg_INVALID_CHARACTERS If not a valid string.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed month
(exceeds 12).

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.
Sentinel LM Programmer’s Reference Manual 221

Chapter 4 – License Code Generation API
VLScgSetLicExpirationDay

Syntax int VLScgSetLicExpirationDay(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description Sets the day of the month of the date on which the license expires. No need
to set if the year is infinite.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets the day of the month: 1-31.

VLScgSetLicExpirationDay Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_INVALID_DATE If value is not valid for the month.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed day.

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.
222 Sentinel LM Programmer’s Reference Manual

Functions for Setting the Fields in CodeT Struct
VLScgSetLicExpirationYear

Syntax int VLScgSetLicExpirationYear(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info);

Description Sets the year of the date that the license expires.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Enter year in 4 digits (e.g., 2003) to avoid year 2000 problem.
NEVERSTRING for infinite.

VLScgSetLicExpirationYear Error Codes

Error Code Description

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_INVALID_YEAR If the year is invalid.

VLScg_INVALID_DEATH_YEAR If year is less than 2003.

VLScg_EXCEEDS_MAX_VALUE If value exceeds 2130.
Sentinel LM Programmer’s Reference Manual 223

Chapter 4 – License Code Generation API
VLScgSetNumericType

Syntax int VlScgSetNumericType(
VLScg_HANDLE iHandle,
codeT *codeP,
int num);

Description Sets the value codeP->numeric_type to the value of num and Checks the
user input and saves the value in code struct.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

num Numeric type values are:
• VLScg_NUMERIC_UNKNOWN = “0”
• VLScg_NOT_NUMERIC = “1”
• VLScg_MISC_SHORT_NUMERIC = “2”
• VLScg_MISC_NUMERIC = “3”

VlScgSetNumericType Error Codes

Error Code Description

VLScg_EXCEEDS_MAX_VALUE Value exceeds the maximum value of 3.

VLScg_LESS_THAN_MIN_VALUE If value is less than 0.

VLScg_INVALID_INT_TYPE If the value is not a non-negative integer.
224 Sentinel LM Programmer’s Reference Manual

License Generation Function
VLScgSetLoadSWLicFile

Syntax int VLScgSetLoadSWLicFile(
VLScg_HANDLE iHandle,
char *filename);

Description Sets and loads the software license file (lscgen.lic).

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, a spe-
cific error codes is returned indicating the reason for failure. For a complete
list of the error codes, see Appendix D, “Error and Result Codes for License
Generation Functions,” on page 415.

License Generation Function

The following table summarizes the license generation function:

VLScgGenerateLicense

Syntax int VLScgGenerateLicense(
VLScg_HANDLE iHandle,
codeT *codeP,
char **result);

Argument Description

iHandle The instance handle for this library.

filename Complete name and path of sw license file.

 License Generation Function

Function Description

VLScgGenerateLicense Generates the license string.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

result Address of pointer pointing to generated license string.
Sentinel LM Programmer’s Reference Manual 225

Chapter 4 – License Code Generation API
Description This function generates the license string for the given codeT struct. It should
be called after all the VLScgSet functions are called. Memory allocation and
deallocation for codeT are the responsibilities of the caller of function.

Memory allocation for the license string is handled by this function. Its
address is to be passed by the caller of this function in the second argument.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

VLScgGenerateLicense Error Codes

Error Code Description

VLScg_INVALID_VENDOR_CODE If vendor identification is illegal.

VLScg_VENDOR_ENCRYPTION_FAIL If vendor-customized encryption fails.

VLScg_LICMETER_NOT_
SUPPORTED

Your Sentinel LM License Meter is not
supported.
226 Sentinel LM Programmer’s Reference Manual

License Decode Function
License Decode Function

The following table summarizes the license decode function:

VLScgDecodeLicense

Syntax int VLScgDecodeLicense(
VLScg_HANDLE iHandle,
char *AnyLicenseString,
char *lic_string,
int lic_string_length,
codeT **codeP);

Description VLScgDecodeLicense API is contained in lsdcod32.lib. This library needs to
be called for using VLScgDecodeLicense API without the license meter.

VLScgDecodeLicense decodes the license string AnyLicenseString and puts
the corresponding codeT struct in the last argument. Pointer to codeT struct
is to be passed as the last argument. This pointer will contain the codeT cor-
responding to AnyString. This function takes care of all memory allocations
it uses.

 License Decode Function

Function Description

VLScgDecodeLicense Decodes the license string.

Argument Description

iHandle The instance handle for this library.

AnyLicenseString User provided license string to be decoded.

lic_string (OUT) User allocated buffer to receive decoded license string.

lic_string_length Length of decoded license string returned.

codeP Pointing to codeT containing input license string.
Sentinel LM Programmer’s Reference Manual 227

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLScgDecodeLicense Error Codes

Error Code Description

VLScg_INVALID_VENDOR_CODE If vendor identification is illegal.

VLScg_VENDOR_ENCRYPTION_FAIL If vendor-customized encryption fails.

VLScg_MALLOC_FAILURE Out of heap memory.

VLScg_SHORT_STRING License string too small to parse.

VLScg_PREMATURE_TERM Premature termination of license
string. Please check.

VLScg_INVALID_CHARS String is not valid.

VLScg_EXCEEDS_MAX_STRING Length of the string is greater than the
defined limit.

VLScg_REMAP_DEFAULT Failed to remap default strings from
configuration file for license.

VLScg_DECRYPT_FAIL Decryption failed for license code.

VLScg_INVALID_CHKSUM Checksum validation failed for license
string.

VLScg_FIXED_STR_ERROR Default fixed string error.

VLScg_INVALID_RANGE Value violates the valid range of input.

VLScg_INVALID_INPUT Invalid input.

VLScg_INVALID_INT_TYPE Value is not numeric.

VLScg_LESS_THAN_MIN_VALUE Value entered is less than the
minimum supported value.

VLScg_LESS_THAN_MAX_VALUE Value entered is greater than the
maximum supported value.

VLScg_INVALID_HEX_TYPE Wrong value entered. (Should be
hexadecimal).

VLScg_SECRET_DECRYPT_FAILURE Decryption failed for secrets. Verify the
configuration file for readable licenses.

VLScg_SIMPLE_ERROR Error in license string. Please check.
228 Sentinel LM Programmer’s Reference Manual

License Meter Related Functions
For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

License Meter Related Functions

The following table summarizes the license meter related functions:

VLScgGetLicenseMeterUnits

Syntax int VLScgGetLicenseMeterUnits(
VLScg_HANDLE iHandle,
long *initialUnitsP,
long *unitsLeftP ,
int codegen_version);

Description Returns the number of license generation units available in the attached
license meter key.

License Meter Related Functions

Function Description

VLScgGetLicenseMeterUnits Returns the number of license generation
units.

VLScgGetTrialLicenseMeterUnits Returns the number of trial license
generation units.

Argument Description

iHandle The instance handle for this library.

initialUnitsP The number of units that were initially available.

unitsLeftP The number of units remaining.

codegen_version Version of the code generator (7 for Sentinel LM 7.x and
8 for Sentinel LM 7.3.0 and greater).
Sentinel LM Programmer’s Reference Manual 229

Chapter 4 – License Code Generation API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix D, “Error and Result
Codes for License Generation Functions,” on page 415.

On platforms that do not support hardware keys, the function returns
V_FAIL.

VLScgGetTrialLicenseMeterUnits

Syntax int VLScgGetTrialLicenseMeterUnits(
VLScg_HANDLE iHandle,
int units,
int codegen_version);

Description Returns the number of trial license generation units available in the
attached license meter.

VLScgGetLicenseMeterUnits Error Codes

Error Code Description

VLScg_LICMETER_EXCEPTION Unknown value in accessing the license
meter.

VLScg_LICMETER_ACCESS_ERROR Error accessing the license meter.

VLScg_LICMETER_CORRUPT License meter is corrupted.

VLScg_LICMETER_VERSION_
MISMATCH

License meter has an invalid version.

VLScg_LICMETER_NOT_
SUPPORTED

Your Sentinel LM License Meter is not
supported.

Argument Description

iHandle The instance handle for this library.

units The number of licenses available.

codegen_version Version of the code generator (7 for Sentinel LM 7.x and
8 for Sentinel LM 7.3.0 and greater).
230 Sentinel LM Programmer’s Reference Manual

License Meter Related Functions
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, a spe-
cific error code is returned indicating the reason for failure. For a complete
list of the error codes, see Appendix D, “Error and Result Codes for License
Generation Functions,” on page 415.
Sentinel LM Programmer’s Reference Manual 231

Chapter 4 – License Code Generation API
232 Sentinel LM Programmer’s Reference Manual

Chapter 5
Redundancy API

License server redundancy allows the total number of licenses to remain
available to the enterprise even if one or more license servers fail. For
example, if an end user has a 100-user license (100 tokens), the
administrator can disperse the license load to three license servers in
different segments (these could be across the world). License Server One will
have 30, License Server Two will have 30, and License Server Three will
have 40. If any license server fails, the license tokens it is serving will be
taken over by the remaining license servers. The heartbeat interval is set to
20 seconds and the heartbeat time out interval is set to 120 seconds,
meaning that when a follower server goes down, the b server would mark its
follower server status to UNKNOWN/DOWN only if the heartbeat is not
returned after 120 seconds (20+100).

With this type of architecture, a single network segment will not have to
handle the load of the entire network traffic.

For information on setting up and using redundant license servers, please
see the Sentinel LM Developer’s Guide.
Sentinel LM Programmer’s Reference Manual 233

Chapter 5 – Redundancy API
Redundancy Functions and API

The following table summarizes the redundancy functions:

Redundancy Functions

Function Description

VLSaddFeature Dynamically adds licensing information about a
feature into the license server’s internal tables. If
licensing information for this feature and version
already exists in the license server’s tables, it may
be overwritten with the new information.
Feature is not permanently added to the license
server, but only until the license server is shut
down and restarted.

VLSaddFeatureExt Adds a license dynamically.

VLSaddFeatureToFile Dynamically adds licensing information to the
license server’s internal tables and normal or
redundant license file.

VLSaddFeatureToFileExt Writes a license dynamically.

VLSaddServerToPool Sends a request to add a new license server into
the pool. This API will actually modify the license
redundant file in order to add the given license
server to the pool.

VLSchangeDistbCrit Changes license token distribution criteria on
license servers in the redundant license server
pool.

VLSdelServerFromPool Removes a license server’s name from the pool.
This API will actually modify the license redundant
file in order to delete the given license server from
the pool.

VLSdiscoverExt Returns the license server characteristic
information, which has the keys for a particular
specified feature and version. The client can
decide a license server preference based on some
criteria.
234 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
VLSgetDistbCrit Returns the current token distribution status for
the given license feature and version.

VLSgetDistbCritToFile Requests the license server provide current token
distribution status for the given license feature
and version or for all features or versions (wild
card characters are acceptable). Writes the
distribution to a file.

VLSgetHostName Takes the IP address as input and tries to resolve it
into the hostName, if possible.

VLSgetHostAddress Accepts hostName as input and tries to resolve it
into IP or IPX address, if possible.

VLSgetFeatureInfoToFile Requests the license server provide information
for the given license feature and version.

VLSgetLeaderServer
Name

Returns the current leader license server’s name by
contacting any license server. The license server to
be contacted is selected by VLSgetServerName
call. So a license server’s name must be set before
a call is made to this function.

VLSgetLicSharingServer
List

Returns the names of the license servers which are
sharing tokens for a given feature name and
version. The server_name_list will contain license
server names (hostNames or IPX addresses).

VLSgetPoolServerList Returns a list of redundant license servers and
their status.

VLSsetBorrowingStatus Turns borrowing on/off for given feature and
version.

VLSsetServerLogState Turns logging on/off for the given event.

Redundancy Functions (Continued)

Function Description
Sentinel LM Programmer’s Reference Manual 235

Chapter 5 – Redundancy API
VLSaddFeature

Syntax int VLSaddFeature (
unsigned char *licenseStr,
unsigned char *unused1,
LS_CHALLENGE *unused2);

Description Dynamically adds licensing information about a feature into the license
server and adds the license code to the license server’s internal tables. If
licensing information for this feature and version already exists in the
license server’s tables, it may be overwritten with the new information
contained in licenseStr.

Note: A feature is not permanently added to the license server, but is cleared
when the license server is shut down and restarted.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

licenseStr The license string that will be added.

unused1 Should be NULL.

unused2 Should be NULL.

VLSaddFeature Error Codes

Error Code Description

VLS_CALLING_ERROR Attempted to use stand-alone mode with network
only library, or network mode with stand-alone
library.

LS_NO_SUCCESS licenseString is NULL

VLS_ADD_LIC_FAILED Generic error indicating the feature has not been
added.

VLS_BAD_DISTB_CRIT Invalid distribution criteria.
236 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLS_CLK_TAMP_FOUND License server has determined that the client’s
system clock has been modified. The license for
this feature has time-tampering protection
enabled, so the license operation is denied.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available for
processing the license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE License server has not been set and is unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could not
be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSaddFeature Error Codes (Continued)

Error Code Description
Sentinel LM Programmer’s Reference Manual 237

Chapter 5 – Redundancy API
VLSaddFeatureExt

Syntax int VLSaddFeatureExt (
unsigned char *licenseString,
unsigned char *DistCritString,
unsigned char *unused1,
LS_CHALLENGE *unused2);

Description Adds a license dynamically to the license server.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

licenseString The license string that will be added.

DistCritString Distribution criteria string. The string will allocate
the license to another license server if the main
license server is locked.

unused1 Should be NULL.

unused2 Should be NULL.

VLSaddFeatureExt Error Codes

Error Code Description

VLS_CALLING_ERROR Attempted to use stand-alone mode with network
only library, or network mode with stand-alone
library.

LS_NO_SUCCESS licenseString is NULL

VLS_ADD_LIC_FAILED Generic error indicating the feature has not been
added.

VLS_BAD_DISTB_CRIT Invalid distribution criteria.

VLS_CLK_TAMP_FOUND License server has determined that the client’s
system clock has been modified. The license for
this feature has time-tampering protection
enabled, so the license operation is denied.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available for
processing the license operation requests.
238 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSaddFeatureToFile

Syntax int VLSaddFeatureToFile(
unsigned char *licenseString,
unsigned char *unused1 ,
unsigned char *unused2,
unsigned char *unused3);

Description Writes a license dynamically to either the redundant license file or normal
license file.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE License server has not been set and is unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could not
be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSaddFeatureExt Error Codes (Continued)

Error Code Description

Argument Description

licenseString The license_string character.

unused1 Should be NULL.

unused2 Should be NULL.

unused3 Should be NULL.
Sentinel LM Programmer’s Reference Manual 239

Chapter 5 – Redundancy API
Note: The feature is permanently added to the license server when the license
server is shutdown and restarted.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSaddFeatureToFile Error Codes

Error Code Description

VLS_CALLING_ERROR Attempted to use stand-alone mode with network
only library, or network mode with stand-alone
library.

LS_NO_SUCCESS licenseString is NULL

VLS_ADD_LIC_FAILED Generic error indicating the feature has not been
added.

VLS_BAD_DISTB_CRIT Invalid distribution criteria.

VLS_CLK_TAMP_FOUND License server has determined that the client’s
system clock has been modified. The license for
this feature has time-tampering protection
enabled, so the license operation is denied.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available for
processing the license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed out.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_NO_SERVER_FILE License server has not been set and is unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could not
be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.
240 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSaddServerToPool

Syntax int VLSaddServerToPool(
char *server_name,
char *server_addr);

Description Will send a request to add a new license server into the pool. This API will
actually modify the license server redundant license file in order to add the
given license server to the pool.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

server_name Name of the license server to add to the pool.

server_addr IP or IPX address of the license server.

VLSaddServerToPool Error Codes

Error Code Description

VLS_CALLING_ERROR • server_name is NULL
• server_address is NULL
• Using stand-alone library. This function cannot

be used with stand-alone library.

LS_NO_SUCCESS Generic error indicating that the license server
could not be added to the pool.

VLS_NON_REDUNDANT_
SRVR

License server is non-redundant and therefore
cannot support this redundancy-related
operation.

VLS_SERVER_ALREADY_
PRESENT

Attempted to add a license server that is already
in the pool.

VLS_POOL_FULL Pool already has maximum number of license
servers. No more license servers can be added.

VLS_BAD_HOSTNAME hostName is not valid.
Sentinel LM Programmer’s Reference Manual 241

Chapter 5 – Redundancy API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSchangeDistbCrit

Syntax int VLSchangeDistbCrit(
char *feature_name,
char *version,
char *dist_crit);

Description Requests to change the distribution criteria for the given license feature and
version.

VLS_NOT_AUTHORIZED Invalid user.

VLS_SERVER_SYNC_IN_
PROGRESS

License server synchronization in process.

VLS_CONF_FILE_ERROR Error in configuration file.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available for
processing the license operation requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_MESS
AGE

Message returned by the license server could not
be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSaddServerToPool Error Codes (Continued)

Error Code Description

Argument Description

feature_name Name of the feature. Must be unique.

version Version of the feature.

dist_crit Dist_crit consists of the names of license server, which will
have licenses for the given feature_name and version. The
dist_crit string must be null-terminated.
242 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
Returns The status code LS_SUCCESS is returned if successful.Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSdelServerFromPool

Syntax int VLSdelServerFromPool(
char *server_name,
char *server_addr);

Description Removes a license server’s name from the pool of redundant license servers.
This API modifies the redundant license file in order to delete the given
license server from the pool.

VLSchangeDistbCrit Error Codes

Error Code Description

LS_BAD_DIST_CRIT Change dist_crit and allocate some keys to the
deleted license server.

LS_NON_REDUNDANT_
SERVER_ CONTACTED

LSHOST is set to a non-redundant license server.

LS_BAD_PARAMETER License server’s name is NULL or an empty string.

LS_NO_AUTHORIZATION License server does not recognize this feature
name.

LS_NO_SUCH_FEATURE Feature_version is non-existent.

LS_UNRESOLVED_SERVER_
NAME

License server’s name cannot be resolved.

LS_MSG_TO_LEADER The request has been sent to the leader license
server.

Argument Description

server_name Name of the license server to delete from the pool.

server_addr IP or IPX address of license server.
Sentinel LM Programmer’s Reference Manual 243

Chapter 5 – Redundancy API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSdelServerFromPool Error Codes

Error Code Description

VLS_CALLING_ERROR • server_name is NULL
• server_address is NULL
• Using stand-alone library. This function can-

not be used with stand-alone library.

LS_NO_SUCCESS Generic error indicating that the license server
could not be deleted from the pool.

VLS_NON_REDUNDANT_
SRVR

License server is non-redundant and therefore
cannot support this redundancy-related
operation.

VLS_SERVER_NOT_PRESENT Attempted to delete a license server that is not in
the pool.

VLS_ONLY_SERVER Cannot remove the last license server from the
pool.

VLS_NO_SERVER_RUNNING License server on specified host is not available
for processing the license operation requests.

VLS_BAD_HOSTNAME hostName is not valid.

VLS_NOT_AUTHORIZED Invalid user.

VLS_CONF_FILE_ERROR Error in configuration file.

VLS_SERVER_SYNC_IN_
PROGRESS

License server synchronization in process.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could not
be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.
244 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.
Sentinel LM Programmer’s Reference Manual 245

Chapter 5 – Redundancy API
VLSdiscoverExt

Syntax int VLSdiscoverExt(
unsigned char *feature name,
unsigned char *version,
unsigned char *unused1,
int *num_servers,
VLSdiscoverInfo *discoverInfo,
int *option_Flag,
int *sharing_crit,
char *vendor_list);

Argument Description

feature_name Name of the feature.

version Version of the feature. Must be unique.

unused1 Should be NULL.

num_servers Number of license servers for which discoverInfo array is
allocated.

discoverInfo The core function that receives the broadcast message,
splits and puts the license server’s name in array format.
VLSdiscoverInfo struct that will contain requested
information.
246 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
option_Flag The option flag is allowed to be logically ORed with other
flags. However, this flag will have first priority. Valid flags
are:
• VLS_DISC_NO_USERLIST – Do not check the host list

specified by the user. By default, it first consults the
LSFORCEHOST environment variable. If LSFORCEHOST
does not exist, it reads the file LSHOST/lshost.

• VLS_DISC_RET_ON_FIRST – If the combined query list is
NULL, it returns the name of the first contacted license
server in the server_list, as soon as it is contacted by any
of the license servers. Otherwise, it returns the name of
the first contacted license server specified in the
combined query list. If this option is not specified.
VLSdiscover returns all the license servers that
responded.

• VLS_DISC_PRIORITIZER_LIST – Treat the combined query
list as a prioritized one, left most being the highest
priority host. It returns in server_list, license servers
sorted in the order of priority host. If this option is not
specified, the combined query list is treated as random.

• VLS_DISC_REDUNDANT_ONLY – Expecting reply only
from redundant license servers. All non-redundant
license servers will ignore the message.

• VLS_DISC_DEFAULT_OPTIONS – This flag is a
combination of the aforementioned flags. Use it if you
are not sure which flag you want to specify.

sharing_crit The license server will match client’s internal information
with the keys it is already granted. Values are:
• VLScg_NO_SHARING
• VLScg_USER_SHARING
• VLScg_HOSTNAME_SHARING
• VLScg_XDISPLAY_SHARING
• VLScg_VENDOR_SHARING

vendor_list Consists of server names. These license serves will be
contacted. The names of all the license servers that have
licenses for specified feature_name and version will be
returned in vendor_list in the same order as in the original
(before the call) vendor_list.

Argument Description
Sentinel LM Programmer’s Reference Manual 247

Chapter 5 – Redundancy API
Description Returns the license server characteristic information of the license server
which has the license tokens for a specified feature and version. The client
can specify a license server preference based on some criteria.

Each license server that is contacted will determine if it has a license that
matches the requested feature name and version. If found, the license server
will then notify the client with the following information:

■ Protocol supported

■ Total number of clients connected to the license server

■ Server IP address

■ Number of units/tokens available

■ Whether this client has already been granted a license for the feature
and version (based on sharing_crit)

Returns The status code LS_SUCCESS is returned if stand-alone library is used. Oth-
erwise, it will return the following error codes:

VLSdiscoverExt Error Codes

Error Code Description

VLS_CALLING_ERROR num_servers is less than or equal to zero.

VLS_NO_RESPONSE_TO_
BROADCAST

License servers have not responded.

LS_NO_SUCCESS Generic error indicating the license server’s
characteristic information could not be retrieved.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

LS_BAD_PARAMETER License server’s name is NULL or an empty string.

LS_SERVER_DOES_NOT_
EXIST

Named license server does not exist.

LS_LEADER_NOT_KNOWN Leader name is not known.

LS_NON_REDUNDANT_
SERVER_CONTACTED

The license server contacted is non-redundant,
and does not support this function.
248 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetDistbCrit

Syntax int VLSgetDistbCrit (
char *feature_name,
char *feature_version,
char *dist_crit,
int *distcrit_buflen);

Description Returns the current token distribution status for the given license feature
and version.

LS_UNRESOLVED_SERVER
_NAME

License server’s name is not resolvable.

VLS_LEADER_NOT_
PRESENT

Leader name is not known.

VLS_NON_REDUNDANT_
SERVER

The license server contacted is non-redundant,
and therefore does not support this function.

VLSdiscoverExt Error Codes (Continued)

Error Code Description

Argument Description

feature_name Name of the feature.

feature_version Version of the feature. Must be unique.

dist_crit (OUT) Dist_crit consists of the names of license server, which
will have licenses for the given feature_name and
version. The dist_crit string must be null-terminated.

distcrit_buflen Size of memory allocated for dist_crit.
Sentinel LM Programmer’s Reference Manual 249

Chapter 5 – Redundancy API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSgetDistbCrit Error Codes

Codes Description

VLS_CALLING_ERROR • feature_name is NULL
• version is NULL
• dist_crit is NULL
• dist_crit_len is zero or negative
• challenge argument is non-NULL, but can-

not be understood.
Using stand-alone library. This function cannot
be used with stand-alone library. Also, both
feature name and version cannot be NULL at
the same time.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature, version and
capacity.

LS_BUFFER_TOO_SMALL dist_crit buffer not large enough to store
information.

VLS_NON_REDUNDANT_
SRVR

License server is non-redundant and therefore
cannot support this redundancy-related
operation.

VLS_FEATURE_INACTIVE Feature is inactive on specified license server.

VLS_SERVER_SYNC_IN_
PROGRESS

License server synchronization in process.

VLS_NON_REDUNDANT_
FEATURE

Feature is non-redundant and thus cannot be
used in this redundancy-related operation.

VLS_DIFF_LIB_VER Version mismatch between license server API
and client API.

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

VLS_NO_SERVER_RUNNING License server on specified host is not available
for processing the license operation requests.
250 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetDistbCritToFile

Syntax int VLSgetDistbCritToFile(
char *feature_name,
char *feature_version,
char *file_name);

Description Requests the license server provide current token distribution status for the
given license feature and version, or for all features, or for all versions, or for
all features and all versions (wild card characters are acceptable).

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSgetDistbCrit Error Codes (Continued)

Codes Description

Argument Description

feature_name Name of the feature.

feature_version Version of the feature.

file_name License server will write distribution criteria for the
specified feature or version to the file.
Sentinel LM Programmer’s Reference Manual 251

Chapter 5 – Redundancy API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSgetDistbCritToFile Error Codes

Error Code Description

VLS_CALLING_ERROR • feature_name is NULL
• file_name is NULL.

Using stand-alone library. This function cannot
be used with stand-alone library.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature, version and
capacity.

VLS_FILE_OPEN_ERROR An error occurred opening the file.

VLS_NON_REDUNDANT_
SRVR

License server is non-redundant and therefore
cannot support this redundancy-related
operation.

VLS_NON_REDUNDANT_
FEATURE

Feature is non-redundant and thus cannot be
used in this redundancy-related operation.

VLS_DIFF_LIB_VER Version mismatch between license server API
and client API.

VLS_SERVER_SYNC_IN_
PROGRESS

License server synchronization process.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available
for processing license operation requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_
MESSAGE

Message returned by license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

LS_BAD_PARAMETER License server’s name is NULL or an empty
string.

LS_BUFFER_TOO_SMALL Buffer provided is too small.
252 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
For a complete list of the error codes, Appendix C, “Sentinel LM Error and
Result Codes,” on page 397.

VLSgetFeatureInfoToFile

Syntax int VLSgetFeatureInfoToFile (
unsigned char *feature_name,
unsigned char *version,
char *file_name);

Description Requests the license server to provide all feature information for the given
license to file_name.

LS_NO_SUCH_FEATURE feature_version is non-existent.

LS_NON_REDUNDANT_
SERVER_CONTACTED

LSHOST is set to non-redundant license server.

VLS_CALLING_ERROR License server’s name is NULL or an empty
string.

VLS_LEADER_NOT_
PRESENT

Leader name is not known.

VLS_NON_REDUNDANT_
SRVR

Sets LSHOST to non-redundant license server.

VLSgetDistbCritToFile Error Codes (Continued)

Error Code Description

Argument Description

feature_name Name of the feature.

version Version of the feature. Must be unique.

file_name License server will provide information for the specified
license feature or version.
Sentinel LM Programmer’s Reference Manual 253

Chapter 5 – Redundancy API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetFeatureInfoToFile Error Codes

Error Code Description

VLS_CALLING_ERROR • file_name is NULL
• feature_name is NULL.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature, version and capacity.

VLS_NON_REDUNDANT_
SRVR

License server is non-redundant and therefore
cannot support this redundancy-related
operation.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available
for processing the license operation requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could not
be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.
254 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
VLSgetHostName

Syntax int VLSgetHostName(
char *IP_address,
char *hostname,
int HostNameBufLen);

Description Will take the IP address as input and try to resolve it into the hostName, if
possible.

Returns The status code LS_SUCCESS is returned if successful.Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Argument Description

IP_address IP addresses to be converted to hostname.

hostname (OUT) IP address to be converted to hostname.

HostNameBufLen The length of the message copied into hostname.

VLSgetHostName Error Codes

Error Code Description

VLS_CALLING_ERROR • IP_address is NULL
• hostName is NULL
• hostNameBufLen is NULL

Using stand-alone library. This function
cannot be used with stand-alone library.

VLS_INVALID_IP_ADDRESS IP_address is not valid.

VLS_UNRESOLVED_IP_
ADDRESS

IP_address is valid, but could not be resolved.

LS_BUFFER_TOO_SMALL Length of hostName returned exceeds
hostNameBufLen.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.
Sentinel LM Programmer’s Reference Manual 255

Chapter 5 – Redundancy API
VLSgetLeaderServerName

Syntax int VLSgetLeaderServerName(
char *leader_name);

Description Returns the current lead license server’s name by contacting any license
server. The license server to be contacted is selected by VLSgetServerName
call. So a license server’s name must be set before a call is made to this
function.

Returns The status code LS_SUCCESS is returned if successful.Otherwise, it will
return the following error codes:

Argument Description

leader_name Current lead license server’s name.
Return types:
• 0 = Success. Found leader license server name.
• 1 = Contact license server is not a redundant license

server.
• 2 = Other error.

VLSgetLeaderServerName Error Codes

Error Code Description

VLS_CALLING_ERROR • leader_name is NULL
• leadername_len is NULL.

LS_BUFFER_TOO_SMALL leadername_len is smaller than the license
server name that will be returned.

VLS_NON_REDUNDANT_SRVR License server is non-redundant and
therefore cannot support this redundancy-
related operation.

VLS_LEADER_NOT_PRESENT Unknown leader.

VLS_SERVER_SYNC_IN_
PROGRESS

License server synchronization in process.

VLS_NON_REDUNDANT_
FEATURE

Feature is non-redundant and thus cannot
be used in this redundancy-related
operation.
256 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLS_DIFF_LIB_VER Version mismatch between license server
API and client API.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

LS_UNRESOLVED_IP_ADDRESS IP address given is not correct.

LS_BAD_PARAMETER License server’s name is NULL or an empty
string.

LS_BUFFER_TOO_SMALL Buffer provided is too small.

VLS_CALLING_ERROR License server’s name is NULL or an empty
string.

VLS_LEADER_NOT_PRESENT Leader name is not known.

VLS_NON_REDUNDANT_SRVR The license server is non-redundant, and
therefore does not support this operation.

VLSgetLeaderServerName Error Codes (Continued)

Error Code Description
Sentinel LM Programmer’s Reference Manual 257

Chapter 5 – Redundancy API
VLSgetHostAddress

Syntax int VLSgetHostAddress(
char *hostname,
char *IP_AddressBuf,
int IPAddrBufLen);

Description Will take hostName as input and tries to resolve it into IP address, if possible.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Note: If you wishe to use IPX protocol for client-server communication then you
must set the LSPROTOCOL environment variable to IPX on the client end.

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

Argument Description

hostname The host name of the computer containing the license
server that is using the log file.

IP_AddressBuf
(OUT)

Pointer to the IP address buffer.

IPAddrBufLen The length of the message copied into IP_AddressBuff.

VLSgetHostAddress Error Codes

Error Code Description

VLS_CALLING_ERROR • IPaddressBuf is NULL
• IPAddrBufLen is NULL.
• Using stand-alone library. This func-

tion cannot be used with stand-alone
library.

VLS_UNRESOLVED_HOSTNAME • hostname is valid, but could not be
resolved.

• IPX protocol is current.
258 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
VLSgetLicSharingServerList

Syntax int VLSgetLicSharingServerList(
char *feature_name,
char *feature_version,
char *server_list_len,
int *server_list,
int *num_servers);

Description Returns the license server names which are sharing tokens for a given fea-
ture name and version. The server_name_list will contain license server
names (hostNames or IPX addresses).

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

feature_name Name of the feature.

feature_version Version of the feature.

server_list A list that contains the license server’s names
(hostNames or IPX addresses).

server_list_len License server will retrieve all the license servers names.
If the list is larger than the specified limit, it will be
truncated.

num_servers Identifies the number of license servers.

VLSgetLicSharingServerList Error Codes

Error Code Description

VLS_CALLING_ERROR • feature_name is NULL
• feature_version is NULL
• server_list is NULL
• server_list_len is zero.
• License server’s name is NULL or an empty

string.
Both feature name and version cannot be
NULL at the same time.
Sentinel LM Programmer’s Reference Manual 259

Chapter 5 – Redundancy API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

LS_BUFFER_TOO_SMALL server_list_len is smaller than license server
name that will be returned.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches the requested feature, version and
capacity.

VLS_FEATURE_INACTIVE Feature is inactive on specified license server.

VLS_SERVER_SYNC_IN_
PROGRESS

License server synchronization in process.

VLS_NON_REDUNDANT_
FEATURE

Feature is non-redundant and thus cannot be
used in this redundancy-related operation.

VLS_DIFF_LIB_VER Version mismatch between license server API
and client API.

VLS_NO_SERVER_RUNNING License server on specified host is not available
for processing the license operation requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_MESSAGE Message returned by the license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_UNRESOLVED_HOSTNAME Host name given is not correct.

LS_BAD_PARAMETER License server’s name is NULL or an empty
string.

VLS_NON_REDUNDANT_SRVR The license server is non-redundant, and
therefore does not support this operation.

VLSgetLicSharingServerList Error Codes (Continued)

Error Code Description
260 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
VLSgetPoolServerList

Syntax int VLSgetPoolServerList(
char *outBuf,
int outBufSz);

Description Returns a list of license servers and their status where the servers are in the
same pool as the contacted redundant license server. The status for each
license server in the list indicates whether that server is active (running) or
not. If a non-redundant license server is contacted, the
VLS_NON_REDUNDANT_SRVR error code is returned. The license server to
be contacted is selected by VLSgetServerName, so you must set the license
server’s name before calling VLSgetPoolServerList.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

*outBuf (OUT) Output buffer.

outBufSz Output buffer size.

VLSgetPoolServerList Error Codes

Error Code Description

VLS_CALLING_ERROR License server’s name is NULL or an
empty string.

LS_BUFFER_TOO_SMALL The output buffer is too small.

VLS_SERVER_SYNC_IN_PROGRESS License server synchronization in process.

VLS_DIFF_LIB_VER Version mismatch between license server
API and client API.

LS_NORESOURCES Insufficient resources (such as memory)
as available to complete the request.

VLS_NON_REDUNDANT_SRVR The license server is non-redundant, and
therefore does not support this
operation.

VLS_ LEADER_NOT_PRESENT Unknown leader.
Sentinel LM Programmer’s Reference Manual 261

Chapter 5 – Redundancy API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSsetBorrowingStatus

Syntax int VLSsetBorrowingStatus(
char *feature_name,
char *feature_version,
int state);

Description Turns token borrowing on or off for the given feature and version. The
license server to be contacted is selected by VLSgetServerName, so you must
set the license server’s name before calling VLSgetPoolServerList.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

feature_name Name of the feature.

feature_version Version of the application. Must be unique.

state Borrowing state: VLS_ON or VLS_OFF.

VLSsetBorrowingStatus Error Codes

Error Code Description

VLS_CALLING_ERROR License server’s name is NULL or an empty
string.

VLS_SERVER_SYNC_IN_
PROGRESS

License server synchronization in process.

VLS_DIFF_LIB_VER Version mismatch between license server API
and client API.

VLS_LEADER_NOT_PRESENT Leader name is not known.

VLS_FEATURE_INACTIVE The given feature is inactive on the specified
license server.

VLS_MSG_TO_LEADER The request has been sent to the leader
license server.
262 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLS_NO_SUCH_FEATURE The license server does not have a license
that matches the specified feature, version
and capacity.

VLS_NOT_AUTHORIZED The user making the request is invalid.

VLS_VENDORIDMISMATCH The vendor ID of the requesting application
does not match the vendor ID for the
feature for which the license server has a
license.

VLS_NON_REDUNDANT_
SRVR

The license server is non-redundant, and
therefore does not support this operation.

VLSsetBorrowingStatus Error Codes (Continued)

Error Code Description
Sentinel LM Programmer’s Reference Manual 263

Chapter 5 – Redundancy API
VLSsetServerLogState

Syntax int VLSsetServerLogState(
int event,
int state);

Description Turns logging on or off for the given event. The license server to be con-
tacted is selected by VLSgetServerName, so you must set the license server’s
name before calling VLSgetPoolServerList.

Argument Description

event The event you want to log. Event may be:
• LOG_SRVR_UP (the license server is running)
• LOG_LDR_ELECT (a pool leader has been elected)
• LOG_HRT_BT (license server bbeat)
• LOG_BORROW_REQ_RESP (token borrowing request and

response)
• LOG_USG_NOTIFY (follower notifies pool leader of token use)
• LOG_CHNG_DIST_CRT (token distribution criteria has

changed)
• LOG_DIST_CRT_SYNC (the pool servers are synchronizing dis-

tribution criteria)
• LOG_CFG_FILE (the LSERVRLF file changed)
• LOG_SRVR_DOWN (license server is down)
• LOG_MOD_SERVER (addition or deletion of a license server to

or from the pool)
• LOG_ADD_DEL_LIC (redundant license has been added or

deleted to or from the pool)

state Logging state: VLS_ON or VLS_OFF.
264 Sentinel LM Programmer’s Reference Manual

Redundancy Functions and API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSsetServerLogState Error Codes

Error Code Description

VLS_CALLING_ERROR License server’s name is NULL or an empty string.

VLS_DIFF_LIB_VER Version mismatch between license server API
and client API.

VLS_FEATURE_INACTIVE The given feature is inactive on the specified
license server.

VLS_MSG_TO_LEADER The request has been sent to the leader license
server.

VLS_NOT_AUTHORIZED The user making the request is invalid.

VLS_BAD_SERVER_
MESSAGE

A message returned from the license server
could not be understood.
Sentinel LM Programmer’s Reference Manual 265

Chapter 5 – Redundancy API
266 Sentinel LM Programmer’s Reference Manual

Chapter 6
License Queuing API

License queuing is the ability of our license servers to take a license request
for a feature and place it in reserve until a license is available. Once the
license is available, the license server will then notify the requesting applica-
tion that the license is now ready for use.

License Queuing Example Code

The following sample is for illustration purposes only. For a working sample
application, please refer to qbounce.c in the samples directory.

/**/
/* */
/* Copyright (C) 2004 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/*This Module contains Proprietary Information of */
/*Rainbow Technologies,Inc and should be treated as*/
/* Confidential */
/**/

#include "lserv.h"
Static LS_Handle ls_handle;
/* Prototype of timer handler function */
void TimerHandler ();
int main(argc, argv)
int argc;
Sentinel LM Programmer’s Reference Manual 267

Chapter 6 – License Queuing API
char **argv;
{
 char feature_name [] = "My Application";
 char version_name [] = "1.0";
 LS_STATUS_CODE returnCode = 0;
 int number_of_units_requested = 1;
 VLSqueuePreference queue_preference;
 int request_flag
if(VLS_INITIALIZE()){ /*Initialize the LS API */return(1);
}

request_flag = VLS_REQ_GET | VLS_REQ_QUEUE;
/* Stay in queue at most 30 minutes */
queue_preference.wait_time = 1800;

/* Once license available for this client, reserve it
for 5 minutes queue_preference.hold_time = 600;
queue_preference.priority_num = 1; */ Not used */

/* Don’t queue me if there are 5 or more entries on the queue*/
queue_preference.absPosition = 5;

/* Don’t queue me if there are 2 or more entries from my
reservation group on the queue */
queue_preference.grpPosition = 2;

/* Request key from Sentinel LM license manager */
returnCode =
VLSqueuedRequest
(LS_ANY,
(unsigned char LSFAR *)"Sentinel LM User",
(unsigned char LSFAR *)feature_name,
(unsigned char LSFAR *)version_name,
&number_of_units_requested,
(unsigned char LSFAR *) NULL,
(LS_CHALLENGE LSFAR *) NULL,&ls_handle,
&queue_preference, &request_flag);
if (returnCode == LS_SUCCESS)
{
 if (request_flag & VLS_REQ_GET)
 {
 /* License was available, run the application! */
 }
268 Sentinel LM Programmer’s Reference Manual

License Queuing Example Code
 else if (request_flag & VLS_REQ_QUEUE)
 {
 /* Was placed on the queue */
 /* TODO: Start timer for sending periodic queue updates
 (every 50 secs is recommended). Assume function TimerHandler
 () will be called when the timer expires (see below).
 */
 }
}
 else
 {
 /* Queued request was not successful, clean up and exit. */
 VLScleanup ();
 return (1);
} /* End if success */
} /* end main () */

void TimerHandler ()
{
 /* Called periodically in order to check the queue status.*/

long expiration_time
LS_STATUS_CODE returnCode

returnCode = VLSupdateQueuedClient (
ls_handle,
&expiration_time
(unsigned char LSFAR *) NULL
(LS_CHALLENGE LSFAR *) NULL;

/* Is the queued license available

if (returnCode == LS_SUCCESS && expiration_time > 0)
{
 if ((returnCode =
 VLSgetQueuedLicense
 (ls_handle,
 (unsigned char LSFAR *) NULL
 (LS_CHALLENGE LSFAR *) NULL))== LS_SUCCESS)
 {
/*Disable the application’s timer and run the application! */
/* Enable automatic heartbeats to the server */
VLSdisableAutoTimer (ls_handle, VLS_ON);
}

Sentinel LM Programmer’s Reference Manual 269

Chapter 6 – License Queuing API
 else
 {
 /* Error getting the license, clean up and quit. */
 VLScleanup ();

 /* Terminate the process */
 }
 }
}

License Queuing Functions

The following table summarizes the license queuing functions:

 License Queuing Functions

Function Description

VLSqueuePreference
Struct

Specifies the clients preference for how it wishes
to be placed in the queue.

VLSserverInfo Struct Stores information about the server.

VLSgetQueuedClientInfo
Struct

Returns client information.

VLSqueuedRequest
VLSqueuedRequestExt

An integrated request for an authorized license
code from the license server. Use this API to:
• Request a license, with option to queue

(requestFlag = VLS_REQ_GET |
VLS_REQ_QUEUE).

• Request a license without queuing (request-
Flag = VLS_REQ_GET). This option has the
same effect as calling a non-queuing API
request (LSRequest, VLSrequestExt, etc.).

• Request to be placed in the queue, even if
the license server has available licenses
(requestFlag = VLS_REQ_QUEUE).

VLSgetQueuedClientInfo Retrieves the current information of a queued
client, such as the number of requested licenses,
feature_name, version, and index.

VLSremoveQueuedClient Removes a queued client from the queue.
270 Sentinel LM Programmer’s Reference Manual

License Queuing Functions
VLSqueuePreference Struct

typedef struct {
 long wait_time;
 long hold_time;
 int priority_num;
 long absPosition;
 long grpPosition;
} VLSqueuePreference;

VLSremoveQueue Deletes the entire queue.

VLSgetHandleStatus Reports the current status of the handle.

VLSupdateQueuedClient Once the client has been put in the queue, it
must call this API periodically to inquire its
current status with the license server. Moreover,
calling this function has the effect of informing
the license server that the client is alive and is
still seeking the license.

VLSgetQueuedLicense Obtains license, once it has been granted. This
function is called only after a call to
VLSupdateQueuedClient reveals that a license
has been granted to a queued client.

VLSqueuePreference
Struct

Specifies the client preference for getting into
the queue.

VLSinitQueuePreference Initializes provided queue preference structure
to default values.

VLSqueuePreference Struct

Member Description

wait_time Maximum time, the client can be in queue.

hold_time After allotment, the maximum time interval for
which the server will keep the requested units
reserved for this client.

 License Queuing Functions (Continued)

Function Description
Sentinel LM Programmer’s Reference Manual 271

Chapter 6 – License Queuing API
VLSserverInfo Struct

typedef struct {
 char identifier[VLS_MAX_NAME_LEN];
 char inBuf[VLS_MAX_BUF_LEN];
 char outBuf[VLS_MAX_BUF_LEN];
} VLSserverInfo;

VLSgetQueuedClientInfo Struct

typedef struct queued_client_info_struct {
 char user_name[VLS_MAXLEN];
 char host_name[VLS_MAXLEN];
 char x_display_name[VLS_MAXLEN];
 char shared_id_name[VLS_MAXLEN];
 char group_name[VLS_MAXLEN];

priority_num Priority vis-a-vis other clients, as decided by the
client application. For use in future. Not
implemented in SLM7.0.

absPosition The maximum position within the queue, before
which the client can be queued.

grpPosition The maximum position within the queue,
considering only those queued clients that
belong to the same group as this client, before
which the client can be queued -1 if the client
doesn't care.

VLSserverInfo Struct

Member Description

identifier The name of the server hook which the user
wants to call.

inBuf String passed to the server.

outBuf String returned by the server.

VLSqueuePreference Struct (Continued)

Member Description
272 Sentinel LM Programmer’s Reference Manual

License Queuing Functions
 unsigned long host_id;
 long server_start_time;
 long server_end_time;
 unsigned long qkey_id;
 int num_units;
 int num_resvd_default;
 int num_resvd_native;
 long wait_time; /*in secs*/
 long hold_time; /*in secs*/
 int priority_num;
 long absPosition; /
 long grpPosition;
 long availabilityTime;
} VLSqueuedClientInfo;

VLSqueuedClientInfo Struct

Member Description

user_name The login name of the user using the application,
where MAXLEN is set to 64 characters.

host_name Name of the host/computer where the user is
running the application, where MAXLEN is set to
64 characters.

x_display_name Name of the X display where the user is
displaying the application, where MAXLEN is set
to 64 characters.

shared_id_name A special vendor-defined ID that can be used for
license sharing decisions. It always has the fixed
value, defaultsharing- ID, unless it is changed by
registering a custom function using the
VLSsetSharedId API call. The maximum length of
the string is set to 64 characters.

group_name Name of the reserved group to which the user
belongs, where MAXLEN is set to 64 characters. If
the user does not belong to an explicitly named
group, DefaultGrp is returned.

host_id The host ID of the computer on which the user is
working.
Sentinel LM Programmer’s Reference Manual 273

Chapter 6 – License Queuing API
VLSqueuedRequest and VLSqueuedRequestExt

Syntax int VLSqueuedRequest(
 unsigned char *license_system
 unsigned char *publisher_name,
 unsigned char *product_name,
 unsigned char) *version,

server_start_time server_start_time is the start time of the license
token.

server_end_time server_end_time is the end time of the license
token. server_end_time should be interpretted as
as start_time + heart beat interval of the license.

qkey_id Identifier of the client queue.

num_units Number of units consumed by the client so far.

num_resvd_default The number of tokens given to this queued token
from default pool, that is from the unreserved
tokens.

num_resvd_native The number of tokens given to this queued token
from its reservation group.

wait_time Maximum time (in seconds), the client can be in
queue.

hold_time After allotment, the maximum time interval (in
seconds) for which the server will keep the
requested units reserved for this client.

priority_num Priority vis-a-vis other clients, as decided by the
client application. For use in future. Not
implemented in SLM7.0.

absPosition The maximum position within the queue, before
which the client can be queued.

grpPosition Current position within the queue, considering
only those queued clients that belong to the
same group to which this client belongs to.

VLSqueuedClientInfo Struct (Continued)

Member Description
274 Sentinel LM Programmer’s Reference Manual

License Queuing Functions
 unsigned long *units_reqd,
 unsigned char *log_comment,
 LS_CHALLENGE *challenge,
 LS_HANDLE *lshandle,
 VLSqueuePreference *qPreference,
 int requestFlag);

int VLSqueuedRequestExt(
 unsigned char *license_system,
 unsigned char *publisher_name,
 unsigned char *product_name,
 unsigned char) *version,
 unsigned long *units_reqd,
 unsigned char *log_comment,
 LS_CHALLENGE *challenge,
 LS_HANDLE *lshandle,
 VLSqueuePreference *qPreference,
 int requestFlag,
 VLSserverInfo server_info);

Argument Description

license_system A license requested in the system. Pointer to the string
which uniquely identifies a particular license system.

publisher_name Refers to the name of the publisher (manufacturer) of
the product. Cannot be NULL and must be unique. It is
recommended that a company name and trademark be
used.

product_name Feature name. The name of the product requesting
licensing resources. Cannot be NULL and must be
unique.

version Version for which licenses are requested. Must be
unique for the associated feature

units_reqd Number of units requested to run the license. The
license system verifies that the requested number of
units exists and it is possible to reserve those units, but
no units are actually consumed at this time. The default
is 1, and this value is used if a NULL value is passed.
Sentinel LM Programmer’s Reference Manual 275

Chapter 6 – License Queuing API
Description The call provides the mechanism to the calling application to ask the license
server to grant a license if available. If no license is available, the client will
be queued. The client can call VLSupdateQueuedClient to inquire if a license
is available. Once a license is available, the client can call
VLSgetQueuedLicense to obtain the license.

In response, the license server will either issue the license token when (and
if) the license is available, put the client in the queue when the license is not

log_comment A string that is written by the license manager to the
comment field of the usage log file.

challenge Pointer to a challenge structure. The challenge-response
will also be returned.

lshandle Handle to the license which the user has requested. If
the user has successfully received the license, the status
of the handle is VLS_ACTIVE_HANDLE. Otherwise, the
client is put in the queue and the status of the handle is
VLS_QUEUED_HANDLE.

qPreference Pointer to the VLSqueuePreference structure, which is
used to specify the client’s preference for how it wishes
to be placed in the queue. After the call is made, the
structure contains the values assigned by the license
server when it has placed the client in the queue.

requestFlag Valid values are:
• VLS_REQ_GET - specifies a non-queuing request

(without queuing the client). If license is not avail-
able, client will not be queued.

• VLS_REQ_QUEUE - specifies to queue the client
(without returning with the license). Even if license is
available, client will be queued.

If both are specified, the client requests the license
server to give the license, if available, otherwise to
queue the client. Upon return from this API, this
parameter will be set to either VLS_REQ_GET (specifying
the license has been granted) or, VLS_REQ_QUEUE
(specifying that the client has been queued).

server_info Information about the server.

Argument Description
276 Sentinel LM Programmer’s Reference Manual

License Queuing Functions
available, or issue an appropriate error message, which describes the cause
for not being able to service the request.

The client will pass the following information to the license server:

■ Time in seconds for the client to wait in the queue for the license.

■ Time in seconds for the server to hold the license once it becomes
available.

■ Priority relative to other clients.

■ The maximum position within the queue before which the client can
be queued.

■ The maximum position within the group queue, before which the
client can be queued.

Notice that the LS_MAX_QLEN environment variable can override the
qPreference structure. The end-user can put a limit on the maximum size of
the queue by defining the LS_MAX_QLEN environment variable. This
variable depends upon the availability of memory resources. The different
values of LS_MAX_QLEN are:

■ LS_MAX_QLEN not set. Client preference is applied.

■ LS_MAX_QLEN = -1. Client preference is ignored and the client is
always queued.

■ LS_MAX_QLEN = 0. Queue is disabled and no clients will be put in the
queue.

■ LS_MAX_QLEN > 0. Overrides the client’s preference.

Similarly variable LS_MAX_GRP_QLEN will override the setting of the max
group wait time in the qPreference structure.

Variables LS_MAX_WAIT_SEC and LS_MAX_HOLD_SEC override the max
wait time and max hold time elements of the qPreference structure.
Sentinel LM Programmer’s Reference Manual 277

Chapter 6 – License Queuing API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSqueuedRequest and VLSqueuedRequestExt Error Codes

Error Code Description

VLS_CALLING_ERROR • request_flag specifies queuing but qPrefer-
ence is NULL.

• lshandle is NULL.
• challenge argument is non-NULL, but can-

not be understood.
• publisherName is NULL

VLS_APP_UNNAMED • product_name is NULL
• version is NULL

VLS_NO_LICENSE_GIVEN • units_reqd is zero.
• Invalid handle specified.
• Generic error indicating that the license is

not granted.

LS_NOLICENSESAVAILABLE All licenses in use.

LS_INSUFFICIENTUNITS License server does not currently have
sufficient licensing units for the requested
feature to grant a license.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature, version and
capacity.

LS_LICENSE_EXPIRED License has expired.

VLS_NOMORE_QUEUE_
RESOURCES

Queue is full.

VLS_APP_NODE_LOCKED Requested feature is node locked, but request
was issued from an unauthorized machine.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_CLK_TAMP_FOUND License server has determined that the client’s
system clock has been modified. The license for
this feature has time-tampering protection
enabled, so the license operation is denied.
278 Sentinel LM Programmer’s Reference Manual

License Queuing Functions
 For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

VLS_TRIAL_LIC_EXHAUSTED Trial license has expired.

VLS_NO_SERVER_RUNNING License server on specified host is not available
for processing license operation requests.

VLS_NO_SERVER_RESPONSE Communication with license server has timed
out.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

VLS_NON_REDUNDANT_
SRVR

License server is non-redundant and therefore
cannot support this redundancy-related
operation.

VLS_SERVER_SYNC_IN_
PROGRESS

License server synchronization in process.

VLS_FEATURE_INACTIVE Feature is inactive on specified license server.

VLS_MAJORITY_RULE_
FAILURE

Majority rule failure prevents token from being
issued.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSqueuedRequest and VLSqueuedRequestExt Error Codes (Continued)

Error Code Description
Sentinel LM Programmer’s Reference Manual 279

Chapter 6 – License Queuing API
VLSgetQueuedClientInfo

Syntax int VLSgetQueuedClientInfo(
unsigned char *feature name,
unsigned char *version,
int index,
VLSqueuedClientInfo *client_info);

Description Fills the structure pointed by client_info to a structure containing the cur-
rent information of a queued client identified by specified feature_name,
version, and index.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

feature_name Feature name of the client for which we are requesting
information.

version Version for which licenses are requested. Must be
unique, for the associated feature.

index Index of the client with the license server, for a
particular feature.

client_info The structure in which information will be returned.
Pointer to the VLSqueuedClientInfo structure, which
specifies the client information.

VLSgetQueuedClientInfo Error Codes

Error Code Description

VLS_CALLING_ERROR • client_info parameter is NULL.
• index is negative.
• Attempted to use stand-alone mode with net-

work only library, or network mode with stand-
alone library.

VLS_APP_UNNAMED • feature_name is NULL
• version is NULL

Both feature and version cannot be NULL
280 Sentinel LM Programmer’s Reference Manual

License Queuing Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLS_NO_LICENSE_GIVEN Finished retrieving client information for all the
clients.

VLS_NO_SUCH_FEATURE License server does not have a license that matches
requested feature, version and capacity.

VLS_MULTIPLE_
VENDORID_FOUND

The license server has licenses for the same feature
and version from multiple vendors. It is ambiguous
which feature is requested.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available for
processing license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and is unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could not
be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSgetQueuedClientInfo Error Codes

Error Code Description
Sentinel LM Programmer’s Reference Manual 281

Chapter 6 – License Queuing API
VLSremoveQueuedClient

Syntax int VLSremoveQueuedClient(
unsigned char *feature name
unsigned char *version
int qkey_id);

Description This API provides an administrative mechanism to remove a queued client.

VLSremoveQueuedClient will be available to:

■ The user who started the license server, which actually signifies when
the client was put in the queue.

■ The root/administrator account.

■ The user-account that originally goes to the queue placement.

Internally, this API will send a message to signal the license server that a
specified client in the queue for a specified feature should be removed.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

feature_name Feature name of the client for which we are requesting
information.

version Version for which licenses are requested.

qkey_id Identifier of the client queue, which needs to be
removed.

VLSremoveQueuedClient Error Codes

Error Code Description

VLS_CALLING_ERROR • qkey_id parameter cannot be negative.
• Attempted to use stand-alone mode with

network only library, or network mode with
stand-alone library.
282 Sentinel LM Programmer’s Reference Manual

License Queuing Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLS_APP_UNNAMED • feature_name is NULL
• version is NULL

Both feature name and version cannot be NULL.

VLS_NO_SUCH_CLIENT License server does not have the specified client.

VLS_CLIENT_NOT_
AUTHORIZED

Client is not authorized to make the specified
request.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available
for processing license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed
out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and is unable
to determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSremoveQueuedClient Error Codes (Continued)

Error Code Description
Sentinel LM Programmer’s Reference Manual 283

Chapter 6 – License Queuing API
VLSremoveQueue

Syntax int VLSremoveQueue(
unsigned char *feature name
unsigned char *version);

Description This API will provide a mechanism to delete the complete queue for a speci-
fied license.

VLSremoveQueue will be available to:

■ The user-account who started the license server, which actually
signifies when the client was put in the queue.

■ The root/administrator account.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

feature_name Identifies the license whose queue needs to be removed.

version Version for which licenses are requested. Must be unique.

VLSremoveQueue Error Codes

Error Code Description

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_APP_UNNAMED • feature_name is NULL
• version is NULL

Both feature name and version cannot be NULL.

VLS_CLIENT_NOT_
AUTHORIZED

Client not authorized to remove queue.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available
for processing license operation requests.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and is unable
to determine which license server to use.
284 Sentinel LM Programmer’s Reference Manual

License Queuing Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetHandleStatus

Syntax int VLSgetHandleStatus(
LS_Handle lshandle);

Description Reports the current status of the handle.

Returns Returns the following error codes:

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSremoveQueue Error Codes (Continued)

Error Code Description

Argument Description

lshandle Identifies the handle previously returned by
VLSqueuedRequest.

VLSgetHandleStatus Error Codes

Error Code Description

LS_BADHANDLE Invalid handle. Handle is already released and
destroyed from previous license operations.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLS_AMBIGUOUS_
HANDLE

lshandle is an ambiguous handle; it is not
exclusively active or exclusively queued.

VLS_ACTIVE_HANDLE lshandle is an active handle.

VLS_QUEUED_HANDLE lshandle is a queued handle.
Sentinel LM Programmer’s Reference Manual 285

Chapter 6 – License Queuing API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSupdateQueuedClient

Syntax int VLSupdateQueuedClient(
LS_HANDLE lshandle,
long *absExpiryTime,
unsigned char *unused1,
LS_CHALLENGE *unused2);

Description The client calls this API, requesting the license server to put him in the
queue. Once the client has been put in the queue, it must call this API peri-
odically to inquire its current status with the license server. Moreover, it also
informs the license server that, he is alive and is seeking the license.

Notice, the clients need to make at least one queue update, within 5 minutes
of the previous queue-update or the request to queue itself. This is
imperative so as to make the license server aware of the active clients. If the

Argument Description

lshandle The handle previously returned by VLSqueuedRequest.
The status of the handle must be VLS_QUEUED_HANDLE
or an error will occur.

absExpiryTime Once the license is available with the license server, the
next call to this API returns in this parameter, the absolute
expiry time before which the client should get the license
using VLSgetQueuedLicense. If any call to
VLSupdateQueuedClient returns a non-negative value in
this parameter, then the license has been granted and set
aside for the client. There is no need to continue its
periodic call to this function. The next step is to obtain the
license by calling VLSgetQueuedLicense.
Possible values for absExpiryTime are:
• Zero = license is not available.
• Non-zero = license is available and will stop calling the

API.

unused1
unused2

Uses NULL as the value.
286 Sentinel LM Programmer’s Reference Manual

License Queuing Functions
license server does not receive an update request from a client within 5
minutes of the last queue-update, it will then assume the client to be inactive
and remove the client from the queue.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSupdateQueuedClient Error Codes

Error Code Description

VLS_CALLING_ERROR • absExpiryTime is NULL.
• Handle cannot be active.
• challenge argument is non-NULL, but can-

not be understood.

LS_BADHANDLE Invalid handle.

LS_LICENSETERMINATED Cannot update license because license has
already expired.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature, version and
capacity.

LS_NOLICENSESAVAILABLE All licenses are in use.

LS_LICENSE_EXPIRED License has expired.

VLS_TRIAL_LIC_EXHAUSTED Trial license has expired.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_FINGERPRINT_
MISMATCH

User or machine excluded from accessing the
requested feature.

VLS_APP_NODE_LOCKED Feature is node locked, but update request was
issued from an unauthorized machine.

VLS_CLK_TAMP_FOUND License server has determined that the client’s
system clock has been modified. The license for
this feature has time-tampering protection
enabled, so the license operation is denied.
Sentinel LM Programmer’s Reference Manual 287

Chapter 6 – License Queuing API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetQueuedLicense

Syntax int VLSgetQueuedLicense(
LS_HANDLE lshandle,
unsigned char *log_comment,
LS_CHALLENGE *challenge);

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

VLS_INVALID_DOMAIN The domain of the license server is different
from that of the client.

VLS_NO_SERVER_RESPONSE Communication with license server has timed
out.

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSupdateQueuedClient Error Codes (Continued)

Error Code Description

Argument Description

lshandle The handle previously returned by VLSqueuedRequest.
The status of the handle must be VLS_QUEUED_HANDLE
and the last call to VLSupdateQueuedClient must have
reported that the licenses have been made available with
the license server.

log_comment A string that is written by the license manager to the
comment field of the usage log file.
288 Sentinel LM Programmer’s Reference Manual

License Queuing Functions
Description Once the queued client identifies that the required licenses are made avail-
able with the license server, it calls this API to fetch the license.

This API will be passed from the client library handle only and, internally, it
will send all the memorized information to the license server. On return it
will provide a valid client-handle value that will be used in later API calls.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

challenge The challenge-response for this operation. Pointer to a
challenge structure. The challenge-response will also be
returned.

Argument Description

VLSgetQueuedLicense Error Codes

Error Code Description

VLS_CALLING_ERROR challenge argument is non-NULL, but cannot
be understood.

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL An error occurred in the use of an internal
buffer.

VLS_NO_LICENSE_GIVEN Generic error indicating that the license is not
granted.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature, version and
capacity.

LS_LICENSE_EXPIRED License has expired.

VLS_TRIAL_LIC_EXHAUSTED Trial license has expired.

LS_NOLICENSESAVAILABLE All licenses are in use.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_FINGERPRINT_
MISMATCH

Client-locked. Locking criteria does not match.
Sentinel LM Programmer’s Reference Manual 289

Chapter 6 – License Queuing API
 For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLS_APP_NODE_LOCKED Requested feature is node locked, but request
was issued from unauthorized machine.

VLS_CLK_TAMP_FOUND License server has determined that the client’s
system clock has been modified. The license for
this feature has time-tampering protection
enabled, so the license operation is denied.

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

VLS_INVALID_DOMAIN The domain of the license server is different
from that of the client.

VLS_NO_SERVER_RESPONSE Communication with license server has timed
out.

VLS_BAD_SERVER_
MESSAGE

Message returned by the license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLS_ELM_LIC_NOT_ENABLE The license was converted using the license
conversion utility. (From a 5.x license), but the
DLT process is not running.

VLSgetQueuedLicense Error Codes (Continued)

Error Code Description
290 Sentinel LM Programmer’s Reference Manual

License Queuing Functions
VLSinitQueuePreference

Syntax int VLSinitQueuePreference(
VLSqueuePreference *qPreference);

Description Initializes the VLSqueuePreference structure to default values. For more
details read through “VLSqueuePreference Struct” on page 271.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, Appendix C, “Sentinel LM Error and
Result Codes,” on page 397.

Argument Description

qPreference Pointer to the VLSqueuePreference structure, which
specifies the client preference for getting into the queue.
After the call is made, the structure signifies the actual
values, which the license server allocates to the client
while putting him in the queue.

Error Code Description

VLS_CALLING_ERROR qPreference is NULL.
Sentinel LM Programmer’s Reference Manual 291

Chapter 6 – License Queuing API
292 Sentinel LM Programmer’s Reference Manual

Chapter 7
Commuter License API

Commuter licensing is the capability to temporarily check out an
authorization to use a protected application from a Sentinel LM license
server to a portable computer. The most common use of this feature is to
allow use of a protected application on a laptop computer that will be
disconnected from the network.

Commuter License Related Functions

The following table summarizes the commuter license related functions:

Commuter License Related Functions

Function Description

VLSCommuterInfo Commuter information structure

VLSgetCommuterInfo Returns the commuter license information.

VLSgetAndInstallCommuter-
Code

Obtains the commuter code from the license
server and issues the commuter
authorization to the client side persistence
database

VLSuninstallAndReturn
CommuterCode

Removes the commuter authorization from
the client side persistence database and
returns the token to the license server.
Sentinel LM Programmer’s Reference Manual 293

Chapter 7 – Commuter License API
 VLSCommuterInfo

Syntax {
int commuter_code_version;
int codegen_version;
char feature_name[VLS_MAXFEALEN];
char feature_version[VLS_MAXVERLEN];
int birth_day;
int birth_month;
int birth_year;
int death_day;
int death_month;
int death_year;
int num_of_licenses;
int locking_crit;
char lock_info[VLS_MAXCLLOCKLEN];
char vendor_info[VLS_VENINFOLEN + 1];
char issuing_server[MAX_NAME_LEN];
long key_life_time;
int protocol_type;
int status;
}VLScommuterInfo;

VLSgetMachineIDString Obtains commuter locking code from a
remote computer.

VLSgetCommuterCode Checks out a commuter authorization for a
remote computer.

VLSinstallCommuterCode Install a commuter authorization on a
remote computer.

Commuter License Related Functions (Continued)

Function Description
294 Sentinel LM Programmer’s Reference Manual

Commuter License Related Functions
Argument Description

commuter_code_version Version of commuter code

codegen_version Version of the code generator used

feature_name Name of the feature

feature_version Version of the feature

birth_day Start day (1-31)

birth_month Start month (1-12)

birth_year Start year

death_day End day (1-31)

death_month End month (1-12)

death_year End year

num_of_licenses Number of licenses

locking_crit Locking criteria of the client

lock_info Locking information of the client

vendor_info The vendor-defined information string. Maximum
length of this string can be 395 characters.

issuing_server License checked out from <servername>

key_life_time The license lifetime for this feature (in seconds).

protocol_type Type of protocol used

status • 1 - Active
• 0 - Inactive
Sentinel LM Programmer’s Reference Manual 295

Chapter 7 – Commuter License API
VLSgetCommuterInfo

Syntax int VLSgetCommuterInfo(
unsigned char *feature_name,
unsigned char *version,
int index,
VLScommuterInfo *commuter_info);

Description Returns the commuter license information.

VLSgetCommuterInfo can be used two ways:

1. Specify feature_name and version as non-NULL and the call will return
information about this feature. The call will ignore the index
argument.

2. If feature_name is NULL, then the call will return information about
the index feature in the persistence database. The call will ignore the
version argument.

VLSgetCommuterInfo should be called until it returns
VLS_NO_MORE_FEATURES by incrementing the index every time.

Returns The status code VLScg_SUCCESS is returned if successful. For a complete list
of the error codes, see Appendix C, “Sentinel LM Error and Result Codes,” on
page 397.

Argument Description

feature_name Name of the feature.

version Version of the feature.

index Used to specify a particular client.

commuter_info Displays the number of clients for commuter
licenses.
296 Sentinel LM Programmer’s Reference Manual

Commuter License Related Functions
VLSgetAndInstallCommuterCode

Syntax int VLSgetAndInstallCommuterCode(
unsigned char *feature_name,
unsigned char *feature_version,
long *units_reqd,
int *duration,
int *lock_mask,
insigned char *log_comment,
LS_CHALLENGE *challenge);

Argument Description

feature_name Name of the feature.

feature_version Version of the feature.

units_reqd Number of units required to run the license. The
license system verifies that the requested number of
units exist and may reserve those units.The number of
units available is returned. If the number of licenses
available with the license server is less than the
requested number, the number of available licenses
will be returned using unitsReqd. If unitsReqd is NULL,
a value of 1 unit is assumed.

duration Displays the number of days for which the license has
to be checked out.

lock_mask Mask defining which fields are to be used for locking.
On entry, lock_mask specifies the locking-criteria that
should be used for looking the commuter-code. If a
zero is given, the API will lock the code to Disk ID
(windows), otherwise it will lock to host name. Notice,
the API will replace the zero with lock_mask for Disk
ID or host name before sending this value to the
license server.

log_comment A string to be written by the license server to the
comment field of the usage log file. Pass a NULL value
for this argument if no log comment is desired.

challenge The challenge-response for this operation. Pointer to
a challenge structure. The challenge-response will also
be returned in this structure.
Sentinel LM Programmer’s Reference Manual 297

Chapter 7 – Commuter License API
Description Obtains the commuter code from the license server and installs the stand-
alone commuter authorization at the client.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSuninstallAndReturnCommuterCode

Syntax int VLSuninstallAndReturnCommuterCode(
unsigned char *feature_name,
unsigned char *feature_version,
unsigned char *log_comment);

Description Uninstalls the commuter authorization from the client and returns the com-
muter authorization to the license server.

Returns The status code VLScg_SUCCESS is returned if successful. For a complete list
of the error codes, see Appendix C, “Sentinel LM Error and Result Codes,” on
page 397.

VLSgetAndInstallCommuterCode Error Codes

Error Code Description

VLS_CALLING_ERROR • duration is NULL
• lock_mask is NULL.

Argument Description

feature_name Name of the feature.

feature_version Version of the feature.

log_comment A string to be written by the license server to the
comment field of the usage log file. Pass a NULL value
for this argument if no log comment is desired.
298 Sentinel LM Programmer’s Reference Manual

Commuter License Related Functions
Note: Note that VLSuninstallAndReturnCommuterCode cannot be used to check
in an authorization for a remote user to prevent the remote user from
checking in the authorization while continuing to use it remotely.

Get Commuter Locking Code from Remote Computer
(VLSgetMachineIDString)

Returns an encrypted string that contains the fingerprint information based
on the locking criteria specified in the call. If NULL is passed as the locking
criteria in the VLSgetMachineIDString call, then VLSgetMachineIDString
picks up all the fingerprint info that is available on the computer.

Use this call when you are trying to check out a commuter authorization for
a remote computer that does not have access to the license server. The com-
puter that will actually use the commuter authorization runs this call and
then passes on the string (via e-mail, disk, etc.) to a computer that has
access to the license server. The commuter authorization is then checked
out and transmitted to a remote user, and locked to the information given by
this string.

If the machine that requires the commuter authorization has network
access to the license server, then you do not need to use this method.
Instead, check out the license using VLSgetAndInstallCommuterCode.

Syntax LS_STATUS_CODE VLSgetMachineIDString(
unsigned long *lock_selector,
unsigned char *machineIDString,
unsigned long *bufSz);

Argument Description

lock_selector Bitmask identifying what criteria you would like to be
contained in the Machine ID string. See “lock_selector
Values” on page 300 for information on the values for
this bitmask. If you set this argument to NULL, this API
call will use the locking selector information it finds on
the computer on which it is running.
Sentinel LM Programmer’s Reference Manual 299

Chapter 7 – Commuter License API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, a specific
error code is returned indicating the reason for the failure. Possible errors
returned include VLS_UNABLE_TO_GET_MACHINE_ID_STRING.

For a complete list of error codes, see Appendix C, “Sentinel LM Error and
Result Codes,” on page 397.

lock_selector Values

The value of lock_selector is a bitmask in which each bit selects a finger-
printing element. It does not describe the fingerprint, but only designates
the locking criteria that will be used to compute the fingerprint. The masks
which define each locking criterion are listed below:

VLS_LOCK_ID_PROM 0x1
VLS_LOCK_IP_ADDR 0x2
VLS_LOCK_DISK_ID 0x4
VLS_LOCK_HOSTNAME 0x8
VLS_LOCK_ETHERNET 0x10
VLS_LOCK_NW_IPX 0x20
VLS_LOCK_NW_SERIAL 0x40
VLS_LOCK_PORTABLE_SERV 0x80
VLS_LOCK_CUSTOM 0x100
VLS_LOCK_PROCESSOR_ID 0x200
VLS_LOCK_ALL 0x3FF

Note: VLS_LOCK_PORTABLE_SERV refers to the Computer ID key, and that
VLS_LOCK_ALL selects all locking criteria.

machineIDString A string that represents the machine’s locking
information. This will be passed on to
VLSgetCommuterCode on a computer that can actually
check out a commuter authorization from the license
server.

bufSz Returns the buffer size of the machineIDString
parameter if machineIDString is NULL. Otherwise,
specifies the size of the machineIDString parameter.

Argument Description
300 Sentinel LM Programmer’s Reference Manual

Commuter License Related Functions
Checking Out a Remote Authorization
(VLSgetCommuterCode)

Obtains a commuter authorization from the license server to be passed on to
a remote client that does not have network access to the license server. This
call checks out a commuter authorization for another machine. It requires a
commuter locking code string from the VLSgetMachineIDString call used
on the remote computer. After successful completion of the call, the
authorization code string should be passed on to the remote computer
which will use VLSinstallCommuterCode to install the authorization.

If the machine that requires the commuter authorization has network
access to the license server, then you should not use this call. Instead, check
out the license using VLSgetAndInstallCommuterCode. Once a commuter
authorization is checked out for a remote computer, it cannot be checked
back in until the commuter authorization expires.

Syntax LS_STATUS_CODE VLSgetCommuterCode(
unsigned char *feature_name,
unsigned char *feature_version,
unsigned long *units_rqd,
unsigned long *duration,
unsigned long *lock_mask,
unsigned char *log_comment,
unsigned char *machineIDString,
unsigned char *commuter_code,
LS_CHALLENGE *challenge,
VLSserverInfo *requestInfo,
VLSserverInfo *commuterInfo,
unsigned long *reserved1);
Sentinel LM Programmer’s Reference Manual 301

Chapter 7 – Commuter License API

Returns The status code LS_SUCCESS is returned if successful. Otherwise, a specific
error code is returned indicating the reason for the failure. Possible error
codes that can be returned by this call include
VLS_INVALID_MACHINEID_STRING.

Argument Description

feature_name The feature name of the license to check out from the
license server.

feature_version The feature version of the license to check out from the
license server.

units_reqd Number of units required for the license.

duration Number of days the commuter authorization will last.
This value may be superseded by the maximum limit
allowed by the license.

lock_mask The desired locking criteria for the client machine. The
value here should be equal to or a subset of the value
used by the VLSgetMachineIDString call. This value will
return the actual locking criteria used to lock the
commuter authorization.

log_comment A comment which will be placed inside the log file on the
license server.

machineIDString Machine ID string generated by the remote computer
desiring the commuter authorization.

commuter_code The actual commuter authorization code. This string
should be passed on to the remote computer desiring the
commuter authorization for installation.

challenge A challenge and response for the given license on the
license server. Set to NULL if you are not using this
feature.

requestInfo Reserved. Use NULL for this value.

commuterInfo To be used in future for hooks.

reserved1 Reserved. Use NULL for this value.
302 Sentinel LM Programmer’s Reference Manual

Commuter License Related Functions
For a complete list of error codes, see Appendix C, “Sentinel LM Error and
Result Codes,” on page 397.

Installing a Remote Commuter Authorization
(VLSinstallCommuterCode)

Installs a commuter authorization onto a remote computer. A computer
that has network access to the license server should generate the commuter
authorization using VLSgetCommuterCode (see “Get Commuter Locking
Code from Remote Computer (VLSgetMachineIDString)” on page 299). The
commuter authorization is then passed on to the computer requiring the
authorization and installed using VLSinstallCommuterCode. After success-
ful completion of this call, the remote computer should be able to use the
commuter authorization.

If the machine that requires the commuter authorization has network
access to the license server, then you do not need to use this call. Instead,
check out the commuter authorization using VLSgetAndInstallCommuter-
Code. Once a commuter authorization is checked out for a remote computer,
it cannot be checked back in—it simply expires.

Syntax LS_STATUS_CODE VLSinstallCommuterCode (
unsigned char *commuter_code,
unsigned char *reserved1,
unsigned long *reserved2);

Returns The status code LS_SUCCESS is returned if successful. Otherwise, a specific
error code is returned indicating the reason for the failure. Possible errors
that can be returned by this call include
VLS_UNABLE_TO_INSTALL_COMMUTER_CODE.

Argument Description

commuter_code The commuter authorization that was generated by a
computer with network access to the license server.

reserved1 Reserved. Use NULL for this value.

reserved2 Reserved. Use NULL for this value.
Sentinel LM Programmer’s Reference Manual 303

Chapter 7 – Commuter License API
For a complete list of error codes, see Appendix C, “Sentinel LM Error and
Result Codes,” on page 397.
304 Sentinel LM Programmer’s Reference Manual

Chapter 8
Capacity License API

As the name suggests, the capacity license feature defines the capacity of a
license. A capacity license is identified by feature name, version and
capacity. The license request is granted on the basis of feature name, version
and capacity. Capacity licensing in Sentinel LM allows multiple license of
same feature, version and different capacity to exist on the same Sentinel
LM license server. For examples of capacity licensing and more information
on this feature, see the Sentinel LM Developer's Guide.

Note: Capacity Licensing is available through APIs only and is not supported by
Sentinel LM-Shell.

Capacity License Related Functions

The following table summarizes the capacity license related functions:

Capacity License Related Functions

Function Description

VLSrequestExt2 Supports capacity and non-capacity requests

VLSgetFeatureInfoExt Tracks the features available on the server

VLSgetCapacityList Returns the list of all the capacity for particular
feature and version.
Sentinel LM Programmer’s Reference Manual 305

Chapter 8 – Capacity License API
VLSrequestExt2

Syntax VLSrequestExt2 (
unsigned char *license_system,
unsigned char *publisher_name,
unsigned char *product_name,
unsigned char *version,
unsigned long *units_reqd,
unsigned char *log_comment,
LS_CHALLENGE *challenge,
LS_HANDLE *lshandle,
VLSserverInfo *serverInfo,
unsigned long *team_capacity_reqd,
unsigned long *capacity_reqd,
unsigned char *unused1,
unsigned long *unused2);

VLSgetClientInfoExt Returns the list of all clients running for a particular
feature, version, and capacity

VLSdeleteFeatureExt Deletes a license from the server based on feature,
version and capacity

VLSgetCapacityFrom
Handle

Returns the team capacity and user capacity
allocated to a handle

VLSsetTeamId Redefines team ID functions

VLSsetTeamIdValue Registers a customized team ID value

Capacity License Related Functions (Continued)

Function Description

Argument Description

license_system Unused.
• Use LS_ANY as the value of this variable.
• LS_ANY is specified to indicate a match against

the installed license system.

publisher_name • A string identifying the publisher of the product.
Limited to 32 characters and cannot be NULL.

• Company name and trademark may be used.
306 Sentinel LM Programmer’s Reference Manual

Capacity License Related Functions
product_name • Name of the feature for which a license code is
requested.

• May consist of any printable characters and can-
not be NULL.

• Limited to 24 characters.

version • Version of the feature for which a license code is
requested.

• May consist of any printable characters. Limited
to 11 characters.

• Version can be NULL.

units_reqd • The number of licenses required. The license
server verifies that the number of units exist and
may reserve those units. The number of available
units is returned.

• If the number of licenses available with the
license server is less than the requested number,
the number of available licenses will be returned
using units_reqd. If units_reqd is NULL, a value of
1 unit is assumed.

• To use the capacity licensing it is necessary that
units required be always 1.

log_comment • A string to be written by the license server to the
comment field of the usage log file.

• Pass a NULL value for this argument if no log
comment is desired.

challenge • The challenge structure. If challenge-response
mechanism is not being used, this pointer must
be NULL.

• The response to the challenge is provided in the
same structure, provided a license was issued, i.e.,
provided the function VLSrequestExt2 returns
LS_SUCCESS.

Argument Description
Sentinel LM Programmer’s Reference Manual 307

Chapter 8 – Capacity License API
Description Supports capacity as well as non-capacity requests.

If the request is denied due to either insufficient team capacity or user
capacity then accordingly the capacity_reqd or team_capacity_reqd field
should contain the available capacity.

VLSrequestExt2 must be used whenever the user wishes to use the capacity
feature in a license. The call can also be used to obtain a token from normal
license.

lshandle • The handle for this request is returned in lshan-
dle. This handle must be used to later update and
release this license code.

• A client can have more than one handle active at
a time.

• Space for lshandle must be allocated by the caller.

serverInfo • This information is passed to the license server for
use in server hook functions.

• VLSinitServerInfo must be called to initialize
serverinfo.

team_capacity_reqd • Required team capacity
• If the server does not have the requested capacity

this field will return the team capacity available
with the server for this feature and version.

• If the request is made for a non-capacity license,
this must be passed as NULL.

capacity_reqd • Required user capacity
• If the server does not have the requested user

capacity, this field will return the user capacity
available with the server for this feature and ver-
sion.

• If the request is made for a non-capacity license
this must be passed as NULL.

unused1 Reserved for future use.

unused2 Reserved for future use.

Argument Description
308 Sentinel LM Programmer’s Reference Manual

Capacity License Related Functions
If the developer wishes to override any of the default user information
passed to the license server, he would be using the VLSsetTeamId/ VLS-
setTeamIdValue APIs.

The following information is sent by the client library as user identification
information:

■ User Name

■ Host Name

■ X-Display name

■ Vendor defined string.

This information is used by the server when it manages or creates teams.
VLSsetTeamId/ VLSsetTeamIdValue needs to be called before calling the
request API so that it can pass the correct information about the user name
etc. to the license server.

Lets consider a possible scenario to interpret the above:

Say we initialize the license system as:

int team_id = 1; /* Override username information */
int units_reqd = 1; /* Should always be 1 if using
capacity request*/
unsigned long team_capacity = 1000; /* Say*/
unsigned long user_capacity = 800; /* Cannot be greater
than team

LS_STATUS_CODE ret_val;
 if(VLSinitialize()){
 // Error in initializing SLM library.
 // Do error condition
 }
 VLSsetTeamId(1,"SENTINEL");

Here we pass ‘SENTINEL’ as the user name. So even if the user has
logged into the client machine with say "XYZ" user name, the license
server would see the request as if it is coming from user "SENTINEL".
Now
Sentinel LM Programmer’s Reference Manual 309

Chapter 8 – Capacity License API
ret_val = VLSrequestExt2(featureName,
version,&units_reqd, &team_capacity, &user_capacity);
 if(ret_val == LS_SUCCESS){
// Succesfully got the requested token as well as team
and user capacity. Now do further actions based on
these values

 }

In case you are unable to get a license token.The possible reasons could be:

■ Team limit has been exhuasted

■ User capacity has been exhausted

■ Team capacity has been exhauseted in case of pooled licenses only.

310 Sentinel LM Programmer’s Reference Manual

Capacity License Related Functions
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSrequestExt2 Error Codes

Error Code Description

VLS_APP_UNNAMED • featureName is NULL
• version is NULL

Both feature name and version cannot be
NULL at the same time.

VLS_CALLING_ERROR • lshandle is NULL
• challenge argument is non NULL
• Attempted to use stand-alone mode with

network-only library, or network mode
with stand-alone library.

VLS_NO_LICENSE_GIVEN • unitsReqd is zero
• lshandle is not a valid handle

VLS_NO_SUCH_FEATURE License server does not have license that
matches requested feature, version and
capacity.

LS_NOLICENSESAVAILABLE All licenses are in use.

LS_INSUFFICIENTUNITS License server does not have sufficient
licensing units for requested feature to grant
license.

LS_LICENSE_EXPIRED License has expired.

VLS_TRIAL_LIC_EXHAUSTED Trial license expired or trial license usage
exhausted.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_CLK_TAMP_FOUND • License server has determined that the cli-
ent system lock has been modified.

• The license for this feature has time tam-
pering protection enabled, so the license
operation is denied.
Sentinel LM Programmer’s Reference Manual 311

Chapter 8 – Capacity License API
VLS_VENDORIDMISMATCH The vendor identification of requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

VLS_SERVER_SYNC_IN_
PROGRESS

License server synchronization in process.

VLS_FEATURE_INACTIVE Feature is inactive on specified license server.

VLS_MAJORITY_RULE_
FAILURE

Majority rule failure prevents token from
being issued.

VLS_NO_SERVER_RUNNING License server on specified host is not available
for processing license operation request.

VLS_NO_SERVER_RESPONSE Communication with license server has timed
out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE • No license server has been set
• Unable to determine which license server

to use.

VLS_BAD_SERVER_MESSAGE Message from the license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_INTERNAL_ERROR Failure occurred in setting timer. (Timer is only
attempted to be set if timer is available for
platform and if license requires timer for
updates.)

VLS_ELM_LIC_NOT_ENABLE The license was converted using the license
conversion utility (from a 5.x license), but the
DLT process is not running.

VLS_INSUFFICIENT_TEAM_
CAPACITY

License server does not currently have
sufficient team capacity available.

VLSrequestExt2 Error Codes (Continued)

Error Code Description
312 Sentinel LM Programmer’s Reference Manual

Capacity License Related Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetFeatureInfoExt

Syntax LS_STATUS_CODE VLSgetFeatureInfoExt(
unsigned char *feature_name,
unsigned char *version,
unsigned long *capacity,
int index,
char *unused1,
long *unused2,
VLSfeatureInfo feature_info);

Description Returns the information of features available on the server.

■ If name, version and capacity is not NULL, information about the
feature indicated by name, version and capacity is returned.

VLS_INSUFFICIENT_USER_
CAPACITY

License server does not currently have
sufficient user capacity available for this team
member.

VLSrequestExt2 Error Codes (Continued)

Error Code Description

Argument Description

feature_name Name of the feature.

version Version of the feature.

capacity Capacity of the feature.

index Used to specify a particular feature.

unused1 Use NULL as value.

unused2 Use NULL as value.

feature_info The structure in which information will be returned. Space
must be allocated by caller.
Sentinel LM Programmer’s Reference Manual 313

Chapter 8 – Capacity License API
■ If information about a non-capacity license is desired, capacity should
be passed as NULL and feature must be non-NULL.

■ If information about all licensed features (capacity as well as non-
capacity) is desired, feature name should be NULL, and index should
be used in a loop.

 Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSgetFeatureInfoExt Error Codes

Error Code Description

VLS_CALLING_ERROR • featureinfo is NULL
• index is negative
• Attempted to use stand-alone mode with net-

work-only library, or network mode with
stand-alone library.

VLS_APP_UNNAMED Version is NULL when name is non_NULL

VLS_NO_MORE_
FEATURES

Finished retrieving feature information for all
features on license server.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available for
processing license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE No license server has been set and unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_NO_SUCH_
FEATURE

License server does not have license that matches
requested feature, version and capacity.
314 Sentinel LM Programmer’s Reference Manual

Capacity License Related Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetCapacityList

Syntax VLSgetCapacityList(
ifndef LSNOPRONTO
unsigned char LSFAR *feature_name,
unsigned char LSFAR *feature_version,
int LSFAR *index,
unsigned long LSFAR *bufferSize,
char LSFAR *capacityList,
char LSFAR *log_comment,
unsigned long LSFAR *unused2

#endif);

Description Returns the list of all the capacities of all the licenses having specified feature
and version but different capacity. This function returns list of capacities as
one string, each capacity separated by a space character.

If capacityList is passed as NULL, the API returns the buffersize required.
VLSgetCapacityList returns an error if the license is a non-capacity license.
For example if Sentinel LM license server has following licenses:

■ Feature F1, version V1, capacity 500

Argument Description

feature_name Name of the feature.

feature_version Version of the feature.

index Returns the index of the license up to which the capacity
has been retrieved based on the bufferSize

bufferSize Specifies the size of capacityList.

capacityList An array containing a list of all the capacities available
for this feature and version, separated by space.
The caller should allocate the space.

log_comment Use NULL as value.

unused1 Use NULL as value.
Sentinel LM Programmer’s Reference Manual 315

Chapter 8 – Capacity License API
■ Feature F1, version V1, capacity 1000

■ Feature F1, version V1, capacity 1500

Then this API would return "500 1000 5000" as the output string in
"capacity_list".

For a discussion of pooled versus non-pooled capacity licenses, refer to the
Sentinel LM Developer's Guide.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSgetCapacityList Error Codes

Error Code Description

VLS_NO_SUCH_FEATURE License server does not have a license that
matches the request feature, version and capacity.

VLS_APP_UNNAMED featureName is NULL.

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network-only library, or network mode with
stand-alone library.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available for
processing license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE No license server has been set and unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_BUFFER_TOO_SMALL An error occurred in the use of an internal buffer.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.
316 Sentinel LM Programmer’s Reference Manual

Capacity License Related Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSgetClientInfoExt

Syntax VLSgetClientInfoExt (
unsigned char *feature_name,
unsigned char *version,
unsigned long *capacity,
int index,
char *log_comment,
VLSclientInfo *client_info);

Description Returns the list of all the clients running for a particular feature, version
and capacity. If the capacity is specified as NULL, this API shall return the
list of all the clients for a particular feature and version.
The suggested use of this function is in a loop, where the first call is made
with index 0 which retrieves information about the first client. Subsequent
calls, when made with 1, 2, 3, and so on, will retrieve information about
other clients of that feature type.

Note: Memory for client_info should be allocated before making the call.

Argument Description

feature_name Name of the feature.

version Version of the feature.

capacity Capacity of the feature.

index Used to specify a particular client.

log_comment Comment.

client_info The structure in which information will be returned. Space
allocated by the caller.
Sentinel LM Programmer’s Reference Manual 317

Chapter 8 – Capacity License API
Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSgetClientInfoExt Error Codes

Error Code Description

VLS_APP_UNNAMED • featureName is NULL.
• version is NULL

Both feature name and version cannot be NULL at
the same time.

VLS_CALLING_ERROR • clientInfo parameter is NULL
• index is negative
• Attempted to use stand-alone mode with net-

work-only library, or network mode with
stand-alone library.

VLS_NO_MORE_CLIENTS Finished retrieving client information for all
clients.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature, version and capacity.

VLS_MULTIPLE_VENDOR
ID_FOUND

The license server has licenses for the same
feature and version from multiple vendors. It is
ambiguous which feature is requested.

VLS_NO_SERVER_
RUNNING

License server on specified host is not available for
processing license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE No license server has been set and unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.
318 Sentinel LM Programmer’s Reference Manual

Capacity License Related Functions
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSdeleteFeatureExt

Syntax VLSdeleteFeatureExt(
unsigned char *feature_name,
unsigned char *version,
unsigned long *capacity,
unsigned char *log_comment,
LS_CHALLENGE *challenge);

Description Deletes a license from the server based on feature, version and capacity. If
the capacity is NULL, this API will delete a non-capacity license for the fea-
ture, version specified.

The license is deleted from the server only and not from the license file.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

feature_name Name of the feature.

version Version of the feature.

capacity Capacity of the feature.

log_comment Unused

challenge Unused

VLSdeleteFeatureExt Error Codes

Error Code Description

VLS_APP_UNNAMED • featureName is NULL.
• version is NULL

Both feature name and version cannot be NULL
at the same time.

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network-only library, or network mode with
stand-alone library.
Sentinel LM Programmer’s Reference Manual 319

Chapter 8 – Capacity License API
For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature, version and capacity.

VLS_DELETE_LIC_FAILED Generic error indicating the feature has not
been deleted.

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

VLS_MULTIPLE_VENDORID
_FOUND

The license server has licenses for the same
feature and version from multiple vendors. It is
ambiguous which feature is requested.

VLS_NO_SERVER_RUNNING License server on specified host is not available
for processing license operation requests.

VLS_NO_SERVER_
RESPONSE

Communication with license server has timed
out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE No license server has been set and unable to
determine which license server to use.

VLS_BAD_SERVER_
MESSAGE

Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLSdeleteFeatureExt Error Codes (Continued)

Error Code Description
320 Sentinel LM Programmer’s Reference Manual

Capacity License Related Functions
VLSgetCapacityFromHandle

Syntax VLSgetCapacityFromHandle(
LS_HANDLE lshandle,
unsigned long LSFAR *team_capacity,
unsigned long LSFAR *user_capacity
unsigned long LSFAR *license_capacity);

Description VLSgetCapacityFromHandle returns the team capacity and user capacity
allocated to a handle.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSsetTeamId

See “VLSsetSharedId/ VLSsetTeamId” on page 70.

VLSsetTeamIdValue

See “VLSsetSharedIdValue/ VLSsetTeamIdValue” on page 72.bb

Argument Description

handle Handle

team_capacity Team capacity allocated to the handle and issued
by the server

user_capacity User capacity allocated to the handle and issued
by the server

license_capcity License capacity allocated to the handle

VLSgetCapacityFromHandle Error Codes

Error Code Description

LS_BADHANDLE The handle is invalid.
Sentinel LM Programmer’s Reference Manual 321

Chapter 8 – Capacity License API
322 Sentinel LM Programmer’s Reference Manual

Chapter 9
Upgrade License API

The Sentinel LM upgrade license feature enables you to update your
customer's existing license to change the version or/and increase the
capacity. A special upgrade license must be created to update the existing
license.

Upgrade License Code Generator API

The following table summarizes the upgrade license code generator related
functions:

Upgrade License Code Generator Related Functions

Function Description

ucodeT Struct Contains the values for the upgrade license.

VLSucgInitialize Initializes the upgrade codegen library

VLSucgCleanup Destroys the handle created using VLSucgInitialize

VLSucgReset Sets all the fields of ucodeT to their default values

VLSucgGetNumErrors Identifies the total number of messages recorded in
the handle

VLSucgGetError
Length

Returns the length of error message identified by
msgNum and recorded in the handle
Sentinel LM Programmer’s Reference Manual 323

Chapter 9 – Upgrade License API
VLSucgGetError
Message

Returns the earliest error from the handle up to
bufLen characters

VLSucgPrintError Prints the complete info of all the error messages
stored in the handle to a file.

VLSucgAllowBase
FeatureName

Identifies whether the corresponding
VLSucgSetBaseFeatureName should be called or not

VLSucgSetBaseFeature
Name

Sets the value of base_feature_name in the ucodeT
struct.

VLSucgAllowBase
FeatureVersion

Identifies whether the corresponding
VLSucgSetBaseFeatureVersion should be called or
not.

VLSucgSetBaseFeature
Version

Sets the value of base_feature_version in the
ucodeT struct.

VLSucgAllowUpgrade
Code

Identifies whether the corresponding
VLSucgSetUpgradeCode API should be called or not

VLSucgSetUpgrade
Code

Sets the value of base_lock_code in the ucodeT
struct to the value in the upgrade_code

VLSucgAllowUpgrade
Flag

Identifies whether the corresponding
VLSucgSetUpgradeFlag should be called or not

VLSucgSetUpgrade
Flag

Sets the value of upd_flags in the ucodeT struct.

VLSucgAllowUpgrade
Version

Identifies whether the corresponding
VLSucgSetUpgradeVersion should be called or not

VLSucgSetUpgrade
Version

Sets the value of upd_version in the ucodeT struct.

VLSucgAllowUpgrade
Capacity

Identifies whether the corresponding
VLSucgSetUpgradeCapacityUnits and
VLSucgSetUpgradeCapacity should be called or not

VLSucgSetUpgrade
CapacityUnits

Sets the value of capacity_units in the ucodeT
struct.

VLSucgSetUpgrade
Capacity

Sets the value of capacity_increment in the ucodeT
struct.

Upgrade License Code Generator Related Functions (Continued)

Function Description
324 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
ucodeT Struct

Syntax typedef struct {
long structSz;
unsigned int vendor_code;
unsigned int version_num;
/* Feature/Version of the base license that needs to be
upgraded */
char base_feature_name[VLSucg_MAX_CODE_COMP_LEN+1];
char base_feature_version[VLSucg_MAX_CODE_COMP_LEN+1];
char base_lock_code[VLSucg_MAX_CODE_COMP_LEN+1];
unsigned long generation_time;
unsigned long generation_sequence;
unsigned long upd_flags;
char upd_version[VLSucg_MAX_CODE_COMP_LEN+1];

/* New version for this feature*/
int capacity_units;
unsigned long capacity_increment ;
unsigned long unused1;
unsigned long unused2;
} ucodeT;

VLSucgGenerate
License

Generates the upgrade license string for the given
ucodeT struct

VLSucgGetLicense
MeterUnits

Returns the number of license generation units
available in the attached dongle

VLSGenerateUpgrade
LockCode

Allows the user to generate a unique upgrade code
for the base license.

Upgrade License Code Generator Related Functions (Continued)

Function Description

ucodeT Struct

Member Description

structSz Size of the structure.

Vendor_code Internal use

version_num Upgrade license code generation library version
Sentinel LM Programmer’s Reference Manual 325

Chapter 9 – Upgrade License API
base_feature_name Feature Name of the base license that needs to
be upgraded

base_feature_version Feature Version of the base license that needs to
be upgraded

lock_code A unique code to identify base licenses which
needs to be upgraded.

generation_time This value shall be set automatically during the
license generation time in GMT. It details about
the time of license generation.

generation_sequence This value shall be set at license generation time
along with generation_time to ensure that on a
fast system, even if two licenses are
generated at the same time, this value should be
different.

upd_flags Bit-wise flag. Will control what will be updated
• VLSucg_UPGRADE_VERSION
• VLSucg_UPGRADE_CAPACITY
• VLSucg_UPGRADE_ALL

upd_version New version for this feature.

capacity_units Flag which determines capacity least count

capacity_increment Capacity increment for this feature.

Unused For future use.

Unused For future use.

ucodeT Struct (Continued)

Member Description
326 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
VLSucgInitialize

Syntax int VLSucgInitialize(
VLSucg_HANDLE *iHandle);

Description Initializes the upgrade codegen library.

VLSucgInitialize should be called before any other API. VLSucgInitialize
returns a unique handle, which is used in all the other API of this library.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

VLSucgCleanup

Syntax int VLSucgCleanup(
VLSucg_HANDLE *iHandle);

Description Destroys the handle created using VLSucgInitialize.

Argument Description

iHandle The pointer to instance handle for this library, provides
access to the internal data structure.

VLSucgInitialize Error Codes

Error Code Description

VLSucg_BAD_HANDLE Call VLSucgCleanup to free the resources
associated with the invalid handle.

VLSucg_MAX_LIMIT_CROSSED Library has crossed the limit of maximum
handles it can allocate.

VLSucg_LICMETER_NOT_
SUPPORTED

Your Sentinel LM License Meter is not
supported.

Argument Description

iHandle Instance handle for this library
Sentinel LM Programmer’s Reference Manual 327

Chapter 9 – Upgrade License API
VLSucgCleanup cleanups the resources associated with the handle.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

VLSucgReset

Syntax int VLSucgReset(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP);

Description Sets all the fields of ucodeT to their default values. VLSucgReset is used after
the Initialize and before the Set and Allow APIs.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

VLSucgCleanup Error Codes

Error Code Description

VLSucg_BAD_HANDLE If the handle passed is not a valid handle.

Argument Description

iHandle Instance handle for this library

ucodeP The pointer to ucodeT struct

VLSucgReset Error Codes

Error Code Description

VLSucg_INVALID_INPUT If the ucodeP is passed as NULL
328 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
VLSucgGetNumErrors

Syntax int VLSucgGetNumErrors(
VLSucg_HANDLE iHandle,
int *numMsgsP);

Description Identifies the total number of messages recorded in the handle.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Argument Description

iHandle Instance handle for this library

numMsgsP The number of messages queued to the handle

VLSucgGetNumErrors Error Codes

Error Code Description

VLSucg_BAD_HANDLE If the handle passed is not a valid handle.

VLSucg_NO_RESOURCES If no resources are available.

VLSucg_FAIL On failure
Sentinel LM Programmer’s Reference Manual 329

Chapter 9 – Upgrade License API
VLSucgGetErrorLength

Syntax int VLSucgGetErrorLength(
VLSucg_HANDLE iHandle,
int msgNum,
int *errLenP);

Description Returns the length of error message identified by msgNum and recorded in
the handle.

The length returned by VLSucgGetErrorLength include the space required
for NULL termination.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Argument Description

iHandle Instance handle for this library

msgNum The number of the message whose length is to be
queried, starts from 0.

errLenP The length of messages identified by msgNum

VLSucgGetErrorLength Error Codes

Error Code Description

VLSucg_BAD_HANDLE If the handle passed is not a valid handle.

VLSucg_NO_RESOURCES If no resources are available.

VLSucg_FAIL On failure
330 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
VLSucgGetErrorMessage

Synatx int VLSucgGetErrorMessage(
VLSucg_HANDLE iHandle,
char *msgBuf,
int bufLen);

Description Returns the earliest error from the handle up to bufLen characters.

■ The bufLen must be the length of the pre allocated buffer msgBuf.

■ The message returned should always be NULL terminated.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Argument Description

iHandle Instance handle for this library

msgBuf A user allocated buffer into which the reference message
will be copied

bufLen The byte length of the message copied into msgBuf

VLSucgGetErrorMessage Error Codes

Error Code Description

VLSucg_BAD_HANDLE If the handle passed is not a valid handle.

VLSucg_NO_RESOURCES If no resources are available.

VLSucg_FAIL On Failure
Sentinel LM Programmer’s Reference Manual 331

Chapter 9 – Upgrade License API
VLSucgPrintError

Syntax int VLSucgPrintError(
VLSucg_HANDLE iHandle,
FILE *file);

Description Prints the complete info of all the error messages stored in the handle to a
file.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Argument Description

iHandle Instance handle for this library

file File pointer

VLSucgPrintError Error Codes

Error Code Description

VLSucg_BAD_HANDLE If the handle passed is not a valid handle.

VLSucg_NO_RESOURCES If no resources are available.

VLSucg_FAIL On Failure
332 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
VLSucgAllowBaseFeatureName

Syntax Int VLSucgAllowFeatureName(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP);

Description Identifies whether the corresponding VLSucgSetBaseFeatureName should
be called or not.

If the VLSucgAllowBaseFeatureName returns 1 only then the
corresponding VLSucgSetBaseFeatureName should be called.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Argument Description

iHandle Instance handle for this library

ucodeP The pointer to ucodeT struct

VLSucgAllowBaseFeatureName Error Codes

Error Code Description

1 VLSucgSetBaseFeatureName is allowed.

0 VLSucgSetBaseFeatureName is not allowed.
Sentinel LM Programmer’s Reference Manual 333

Chapter 9 – Upgrade License API
VLSucgSetBaseFeatureName

Syntax int VLSucgSetBaseFeatureName(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP,
char *feature_name);

Description Sets the value of base_ feature_name in the ucodeT struct.

This function also checks the input variables for their validity and boundary
conditions.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Argument Description

iHandle Instance handle for this library

ucodeP The pointer to ucodeT struct

feature_name • Any printable ASCII text except #.
• Maximum of 24 characters.

VLSucgSetBaseFeatureName Error Codes

Error Code Description

VLSucg_INVALID_CHARS Invalid characters in feature_name.

VLSucg_NO_FEATURE_NAME If feature_name is NULL.

VLSucg_RESERV_STR_ERROR If the feature_name is a reserved string.

VLSucg_EXCEEDS_MAX_
VALUE

If the length of feature_name string
exceeds maximum allowed length(24 char).
334 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
VLSucgAllowBaseFeatureVersion

Syntax int VLSucgAllowBaseFeatureVersion(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP);

Description Identifies whether the corresponding VLSucgSetBaseFeatureVersion should
be called or not.

If the VLSucgAllowBaseFeatureVersion returns 1 only then the
corresponding VLSucgSetBaseFeatureVersion should be called.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Argument Description

iHandle Instance handle for this library

ucodeP The pointer to ucodeT struct

VLSucgAllowBaseFeatureVersion Error Codes

Error Code Description

1 VLSucgSetBaseFeatureVersion is allowed.

0 VLSucgSetBaseFeatureVersion is not allowed.
Sentinel LM Programmer’s Reference Manual 335

Chapter 9 – Upgrade License API
VLSucgSetBaseFeatureVersion

Syntax int VLSucgSetBaseFeatureVersion(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP,
char *feature_version);

Description Sets the value of base_ feature_version in the ucodeT struct. This function
checks the input variables for their validity and boundary conditions.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Argument Description

iHandle Instance handle for this library

ucodeP The pointer to ucodeT struct

feature_version • Any printable ASCII text except #.
• Maximum of 11 characters.

VLSucgSetBaseFeatureVersion Error Codes

Error Code Description

VLSucg_INVALID_CHARS If feature_version characters are not
printable.

VLSucg_RESERV_STR_ERROR If the feature_version is a reserved string.

VLSucg_EXCEEDS_MAX_
VALUE

If the length of feature_version string
exceeds maximum allowed length(11 char).
336 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
VLSucgAllowUpgradeCode

Syntax int VLSucgAllowUpgradeCode(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP);

Description Identifies whether the corresponding VLSucgSetUpgradeCode should be
called or not.

Only if the VLSucgAllowUpgradeCode returns 1 then the corresponding
VLSucgSetUpgradeCode should be called.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Argument Description

iHandle Instance handle for this library

ucodeP The pointer to ucodeT struct

VLSucgAllowUpgradeCode Error Codes

Error Code Description

1 VLSucgSetUpgradeCode is allowed.

0 VLSucgSetUpgradeCode is not allowed
Sentinel LM Programmer’s Reference Manual 337

Chapter 9 – Upgrade License API
VLSucgSetUpgradeCode

Syntax int VLSucgSetUpgradeCode(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP,
char *upgrade_code);

Description Sets the value of the lock_code variable in the ucodeT struct.

This function checks the input variables for their validity and boundary
conditions. However, this function does not checks the validity of upgrade
code.

Note: All the validations and matching of base license information with upgrade
license information will be done in VLSucgGenerateLicense.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Argument Description

iHandle Instance handle for this library.

ucodeP The pointer to ucodeT struct.

upgrade_code Upgrade code of base license.

VLSucgSetUpgradeCode Error Codes

Error Code Description

VLSucg_INVALID_INPUT If ucodeP is passed as NULL.

VLSucg_NO_UPGRADE_
CODE

If the upgrade_code is passed as NULL or empty
string.

VLSucg_EXCEEDS_MAX_
VALUE

If the length of upgrade_code string exceeds
maximum allowed length.

VLSucg_FAIL On Failure.
338 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
VLSucgAllowUpgradeFlag

Syntax int VLSucgAllowUpgradeFlag(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP);

Description Indicates whether the corresponding VLSucgSetUpgradeFlag should be
called or not.

If the VLSucgAllowUpgradeFlag returns 1 only then the corresponding
VLSucgSetUpgradeFlag should be called.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Argument Description

iHandle Instance handle for this library.

ucodeP The pointer to ucodeT struct.

VLSucgAllowUpgradeFlag Error Codes

Error Code Description

1 Capacity Upgrade is allowed.

0 Capacity Upgrade is not allowed.
Sentinel LM Programmer’s Reference Manual 339

Chapter 9 – Upgrade License API
VLSucgSetUpgradeFlag

Syntax int VLSucgSetUpgradeFlag(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP,
char *flag);

Description Sets the value of upd_flags in the ucodeT struct. This function also checks the
input variables for their validity and boundary conditions.

■ If the flag value is VLSucg_UPGRADE_VERSION then only version
upgrade license can be generated.

■ If the flag value is VLSucg_UPGRADE_CAPACITY then only capacity
upgrade license can be generated.

■ If the flag value is VLSucg_UPGRADE_ALL then both version and
capacity upgrade license can be generated.

Argument Description

iHandle Instance handle for this library.

ucodeP The pointer to ucodeT struct.

flag The value of flag is used to set the upd_flags of ucodeT
struct. Legal values are bit combinations of
• VLSucg_UPGRADE_VERSION
• VLSucg_UPGRADE_CAPACITY
• VLSucg_UPGRADE_ALL
340 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

VLSucgAllowUpgradeVersion

Syntax int VLSucgAllowUpgradeVersion(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP);

Description Indicates whether the corresponding VLSucgSetUpgradeVersion should be
called or not.

Only if the VLSucgAllowUpgradeVersion returns 1 then the corresponding
VLSucgSetUpgradeVersion should be called.

VLSucgSetUpgradeFlag Error Codes

Error Code Description

VLSucg_BAD_HANDLE If the handle passed is not a valid handle.

VLSucg_INVALID_INPUT If the either the ucodeP or upd_flags is passed
as NULL. Also if the upd_flags is passed as an
empty string.

VLSucg_INVALID_INT_TYPE If value of upd_flags is not numeric.

VLSucg_EXCEEDS_MAX_
VALUE

If value of upd_flags exceeds
VLSucg_UPGRADE_ALL

VLSucg_LESS_THAN_MIN_
VALUE

If value is lower than
VLSucg_UPGRADE_VERSION.

Argument Description

iHandle Instance handle for this library.

ucodeP The pointer to ucodeT struct.
Sentinel LM Programmer’s Reference Manual 341

Chapter 9 – Upgrade License API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

VLSucgSetUpgradeVersion

Syntax int VLSucgSetUpgradeVersion(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP,
char *upgrade_version);

Description Sets the value of upd_version in the ucodeT struct to the value of
upgrade_version. This function also checks the input variables for their
validity and boundary conditions.

VLSucgAllowUpgradeVersion Error Codes

Error Code Description

1 VLSucgSetUpgradeVersion is allowed

0 VLSucgSetUpgradeVersion is not allowed

Argument Description

iHandle Instance handle for this library.

ucodeP The pointer to ucodeT struct.

upgrade_version • Any printable ASCII except #.
• Maximum of 11 characters.
342 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

VLSucgAllowUpgradeCapacity

Syntax int VLSucgAllowUpgradeCapacity(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP);

Description Indicates whether the corresponding VLSucgSetUpgradeCapacityUnits and
VLSucgSetUpgradeCapacity should be called or not. If the
VLSucgAllowUpgradeCapacity returns 1 only then the corresponding
Capacity should be called.

VLSucgSetUpgradeVersion Error Codes

Error Code Description

VLSucg_INVALID_INPUT If the either the ucodeP or upgrade_version is
passed as NULL. Also if the upgrade _version
does not contain a valid string.

VLSucg_INVALID_CHARS If upgrade_version characters are not
printable.

VLSucg_RESERV_STR_ERROR If the upgrade_version is a reserved string.

VLSucg_EXCEEDS_MAX_
VALUE

If the length of upgrade_version string
exceeds maximum allowed length.

Argument Description

iHandle Instance handle for this library.

ucodeP The pointer to ucodeT struct.
Sentinel LM Programmer’s Reference Manual 343

Chapter 9 – Upgrade License API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

VLSucgSetUpgradeCapacityUnits

Syntax int VLSucgSetUpgradeCapacityUnits(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP,
char *cap_units);

Description Sets the value of capacity_units in the ucodeT struct. This function should be
called either in case of capacity upgrade or in case of both version and
capacity upgrade.

VLSucgAllowUpgradeCapacity Error Codes

Error Code Description

1 VLSucgSetUpgradeCapacity is allowed

0 VLSucgSetUpgradeCapacity is not allowed

Argument Description

iHandle Instance handle for this library.

ucodeP The pointer to ucodeT struct.

cap_units Capacity specification units: from 0 to 4. The values
are:
• If capacity_units is 0, capacity shall be multiple of

1(s), maximum 1022.
• If capacity_units is 1, capacity shall be multiple of

10(s), maximum 10220.
• If capacity_units is 2, capacity shall be multiple of

100(s), maximum 102200.
• If capacity_units is 3, capacity shall be multiple of

1000(s), maximum 1022000.
• If capacity_units is 4, capacity shall be multiple of

10000(s), maximum 10220000.
344 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
VLSucgSetUpgradeCapacityUnits also check the input variables for their
validity and boundary conditions.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

VLSucgSetUpgradeCapacityUnits Error Codes

Error Code Description

VLSucg_INVALID_INPUT If the either the ucodeP or cap_units is passed
as NULL. Also if the cap_units is passed as an
empty string.

VLSucg_INVALID_INT_TYPE If value of cap_units is not numeric.

VLSucg_EXCEEDS_MAX_
VALUE

If the value of cap_units exceeds
VLScg_CAPACITY_UNITS_MAX_VALUE

VLSucg_LESS_THAN_MIN_
VALUE

If the value is lower than
VLScg_CAPACITY_UNITS_MIN_VALUE.
Sentinel LM Programmer’s Reference Manual 345

Chapter 9 – Upgrade License API
VLSucgSetUpgradeCapacity

Syntax int VLSucgSetUpgradeCapacity(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP,
char *cap_increment);

Definition Sets the value of capacity_increment in the ucodeT struct. This function also
check the input variables for their validity and boundary conditions. Infinite
capacity shall also be allowed.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

iHandle Instance handle for this library.

ucodeP The pointer to ucodeT struct.

cap_
increment

Controls the capacity
• If capacity_units is 0, capacity shall be multiple of

1(s), maximum 1022.
• If capacity_units is 1, capacity shall be multiple of

10(s), maximum 10220.
• If capacity_units is 2, capacity shall be multiple of

100(s), maximum 102200.
• If capacity_units is 3, capacity shall be multiple of

1000(s), maximum 1022000.
• If capacity_units is 4, capacity shall be multiple of

10000(s), maximum 10220000.
NOLIMITSTR or EMPTY(“/0”) String can be used
to specify infinite capacity.

VLSucgSetUpgradeCapacity Error Codes

Error Code Description

VLSucg_BAD_HANDLE If the handle passed is not a valid handle.

VLSucg_INVALID_INPUT If the either the ucodeP or cap_increment is
passed as NULL. Also if the cap_increment is
passed as an empty string.

VLSucg_NOT_MULTIPLE If value is not a correct multiple.
346 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

VLSucgGenerateLicense

Syntax int VLSucgGenerateLicense(
VLSucg_HANDLE iHandle,
ucodeT *ucodeP,
char *upgrade_code,
char **result);

Description Generates the upgrade license string for the given ucodeT struct.
VLSucgGenerateLicense should be called after all the VLSucgSet functions
are called. Memory allocation and free for ucodeT are the responsibilities of
the caller of the API. Memory allocation for the license string shall be taken
care by the API.

VLSucgGenerateLicense decodes the upgrade_code and extract the
information of base license. It performs the following validation before
generating an upgrade license:

VLSucg_INVALID_INT_TYPE If value of cap_increment is not numeric.

VLSucg_EXCEEDS_MAX_
VALUE

If the value of cap_increment exceeds
maximum allowed.

VLSucg_LESS_THAN_MIN_
VALUE

If the value is lower than minimum allowed.

VLSucgSetUpgradeCapacity Error Codes (Continued)

Error Code Description

Argument Description

iHandle Instance handle for this library.

ucodeP The pointer to ucodeT struct.

upgrade_code Upgrade code of base license

result Address of pointer pointing to generated license
string.
Sentinel LM Programmer’s Reference Manual 347

Chapter 9 – Upgrade License API
■ Feature Name, Version and vendor code of base license is matched
with the base feature name, base version and vendor code of ucodeT.

■ The capacity upgrade is allowed only if the base license is a Non-
pooled capacity license.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSucgGenerateLicense Error Codes

Error Code Description

VLSucg_INVALID_INPUT If the ucodeP is passed as NULL.

VLSucg_INVALID_VENDOR_
CODE

If vendor identification is illegal.

VLSucg_VENDOR_
ENCRYPTION_FAIL

If vendor-customized encryption fails.

VLSucg_MALLOC_FAILURE If error occur while allocating internal memory
for ucodeT struct.

VLSucg_LICMETER_
EXCEPTION

If error occur while accessing the dongle.

VLSucg_NO_NETWORK_
AUTHORIZATION

If not authorized to generate network
licenses.

VLSucg_LICMETER_
COUNTER_TOOLOW

If license meter count is less than the expected
decrement count.

VLSucg_NO_CAPACITY_
AUTHORIZATION

If not authorized to generate capacity licenses.

VLSucg_NO_UPGRADE_
AUTHORIZATION

If not authorized to generate upgrade
licenses.

VLSucg_INTERNAL_ERROR If any internal error occur while generating
the license string.

VLSucg_INVALID_BASE_LIC
_INFO

The information-feature name, version vendor
code provided for base license is incorrect.

VLSucg_CAPACITY_UPD_
NOT_ALLOWED

Capacity upgrade is not allowed, as the base lic
is a non-capacity license.
348 Sentinel LM Programmer’s Reference Manual

Upgrade License Code Generator API
For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

VLSucgGetLicenseMeterUnits

Syntax int VLSucgGetLicenseMeterUnits(
VLSucg_HANDLE iHandle,
long *initialUnitsP,
long *unitsLeftP,
int ucodegen_version);

Description Returns the number of license generation units available in the attached
dongle.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

VLSucg_INVALID_UPGRADE
_CODE

The specified upgrade code is invalid.

VLSucg_LICMETER_NOT_
SUPPORTED

Your Sentinel LM License Meter is not
supported.

VLSucgGenerateLicense Error Codes (Continued)

Error Code Description

Argument Description

iHandle Instance handle for this library.

initialUnitsP User provided license string to be decoded.

unitsLeftP User allocated buffer to receive decoded license
string.

ucodegen_version Version of the ucodegen library

VLSucgGetLicenseMeterUnits Error Codes

Error Code Description

VLSucg_INVALID_VENDOR_CODE If vendor identification is illegal.

VLSucg_VENDOR_ENCRYPTION_
FAIL

If vendor-customized encryption fails
Sentinel LM Programmer’s Reference Manual 349

Chapter 9 – Upgrade License API
For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

VLSgenerateUpgradeLockCode

Syntax int VLSgenerateUpgradeLockCode(
unsigned char *lic_string,
unsigned char *upgrade_lock_code,
unsigned long *buffer_size);

Description VLSgenerateUpgradeLockCode allows the user to generate a unique
upgrade code for the base license. The upgrade code must be an encrypted
string so that it doesn't make any visible sense to the user/developer.

This API is a part of the generic library (lsutil32.lib).

VLSucg_MALLOC_FAILURE If error occur while allocating internal
memory for ucodeT struct

VLSucg_FAIL On Failure.

VLSucg_LICMETER_NOT_
SUPPORTED

Your Sentinel LM License Meter is not
supported.

VLSucgGetLicenseMeterUnits Error Codes (Continued)

Error Code Description

Argument Description

lic_string Base license string.

upgrade_lock
_code

Buffer containing the generated upgrade lock code. The
caller should allocate the memory space.

buffer_size • Size of the allocated buffer.
• If NULL is passed instead of buffer, then this will

return buffer size required for the generated upgrade
lock code.
350 Sentinel LM Programmer’s Reference Manual

Upgrade License Decode API
Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Upgrade License Decode API

The following table summarizes the upgrade license decode related
functions:

VLSgenerateUpgradeLockCode Error Codes

Error Code Description

LS_NORESOURCES Unable to allocate memory required to
decode the passed license string and to
generate upgrade code.

VLS_CALLING_ERROR If called with invalid arguments.

LS_NO_SUCCESS If unable to generate upgrade code.

VLS_VENDORIDMISMATCH If license string with invalid vendor code
is passed.

VLS_UPGRADE_NOT_ALLOWED It shall not generate the Upgrade Code
if the base license is found to be a Multi
Feature Short Numeric, or Trial or
Commuter or Redundant License.

LS_BUFFER_TOO_SMALL • buffer parameter is NULL.
• Size of upgrade lock code exceeds

buffer_size parameter.

Upgrade License Decode Related Functions

Function Description

ulcCode Stores information required to decode upgrade
lock code.
Sentinel LM Programmer’s Reference Manual 351

Chapter 9 – Upgrade License API
ulcCode Struct

typedef struct
{int version_num;
 char hash_vendor_string[VENDOR_HASH_LENGTH];
 int capacity_flag;
 int standalone_flag;
 unsigned num_keys;
 int birth_day;
 int birth_month;
 int birth_year;
 int death_day;
 int death_month;
 int death_year;
 int client_server_lock_mode;
 unsigned char base_lock_code[BASE_LOCK_CODE_LENGTH +
 1];
 char base_feature_name[VLScg_MAX_CODE_COMP_LEN +
 1];
 char base_feature_version[VLScg_MAX_CODE_COMP_LEN
 + 1];
 unsigned long capacity;
} ulcCode;

VLSdecodeUpgrade
lockCode

Decodes the upgrade lock code.

VLSucgDecodeLicense Decodes the encrypted license string generated by
upgrade code generator library

ulcCode Struct

Member Description

version_num Number maintaing the version of the structure

hash_vendor_
string

A numeric value representing the feature and version
of the license.

Upgrade License Decode Related Functions (Continued)

Function Description
352 Sentinel LM Programmer’s Reference Manual

Upgrade License Decode API
VLSdecodeUpgradelockCode

Syntax int VLSdecodeUpgradelockCode(
 char *upgrade_lock_code,
 char *compacted_upd_lock_code,
 int length,
 ulcCode **ulcCodePP);

capacity_flag The value of capacity flag.

standalone_flag The value of standalone flag.

num_keys The number of keys

birth_day The starting day of the license.

birth_month The starting month of the license.

birth_year The starting year of the license.

death_day The expiration day of the license.

death_month The expiration month of the license.

death_year The expiration year of the license.

client_server_lock
_mode

The locking mode

base_lock_code Base lock code

base_feature_
name

Base feature name

base_feature_
version

Base feature version

capacity Capacity of the license.

ulcCode Struct

Member Description

Argument Description

upgrade_lock_
code

Upgrade lock code to be decoded.
Sentinel LM Programmer’s Reference Manual 353

Chapter 9 – Upgrade License API
Description VLSdecodeUpgardelockCode API decodes the upgarde lock code.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix C, “Sentinel LM Error
and Result Codes,” on page 397.

VLSucgDecodeLicense

Syntax int VLSucgDecodeLicense(
VLSucg_HANDLE iHandle,
char *AnyLicenseString,
char *lic_string,
int lic_string_length,
ucodeT **ucodePP);

compacted_upd_
lock_code

Upgrade lock code string after removing comment
chars and white spaces . This can also be set as null.

length Length of compacted_upd_lock_code in case it is not
null.

ulcCodePP Pointer to pointer to ulcCode structure.

Argument Description

VLSdecodeUpgradelockCode Error Codes

Error Code Description

LS_NORESOURCES If vendor identification is illegal.

LS_NO_SUCCESS Failed to decrypt the license

VLS_INTERNAL_ERROR If error occur while allocating internal
memory for ucodeT struct

Argument Description

iHandle Instance handle for this library.

AnyLicenseString User provided license string to be decoded.

Lic_string User allocated buffer to receive decoded license string.
354 Sentinel LM Programmer’s Reference Manual

Upgrade License Decode API
Description VLSucgDecodeLicense API is contained in lsdcod32.lib. This library needs to
be called for using VLSucgDecodeLicense API without the license meter.

Decodes the encrypted license string generated by upgrade code generator
library. It also converts the license string into ucodePP struct.

Note: VLSucgDecodeLicense does not decodes/understand the normal (base)
licenses.

Returns The status code VLScg_SUCCESS is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see Appendix E, “Error and Result
Codes for Upgrade License Functions,” on page 423.

Lic_string_length Length of decoded license string returned.

ucodePP • Address of pointer to ucodeT struct
• Contains input license string.

Argument Description

VLSucgDecodeLicense Error Codes

Error Code Description

VLSucg_INVALID_VENDOR_CODE If vendor identification is illegal.

VLSucg_VENDOR_ENCRYPTION_
FAIL

If vendor-customized encryption fails

VLSucg_MALLOC_FAILURE If error occur while allocating internal
memory for ucodeT struct

VLSucg_FAIL On Failure.
Sentinel LM Programmer’s Reference Manual 355

Chapter 9 – Upgrade License API
356 Sentinel LM Programmer’s Reference Manual

Chapter 10
Usage Log Functions

The usage log functions control and manipulate the usage log file.

The following table summarizes the usage log functions:

VLSchangeUsageLogFileName

Syntax int VLSchangeUsageLogFileName(
char *hostName,
char *newFileName);

Usage Log Functions

Function Description

VLSchangeUsageLogFileName This API changes the name of the existing
usage log file. This change can be done
while the file is being used.

VLSgetUsageLogFileName API determines the name of the existing
usage log file.

Argument Description

hostName The host name of the computer containing the
license server that is using the log file.

newFileName The new name you want to use for the log file.
Sentinel LM Programmer’s Reference Manual 357

Chapter 10 – Usage Log Functions
Description Changes the name of the existing usage log file. This change can be done
while the file is being used.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of
the error codes, Appendix C, “Sentinel LM Error and Result Codes,” on page
397.

VLSgetUsageLogFileName

Syntax int VLSgetUsageLogFileName(
char *hostName,
char *fileName);

Description Determines the name of the existing usage log file.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of
the error codes, Appendix C, “Sentinel LM Error and Result Codes,” on page
397.

Argument Description

hostName The host name of the computer containing the license
server that is using the log file.

fileName The name of the existing usage log file is returned in this
argument.
358 Sentinel LM Programmer’s Reference Manual

Chapter 11
Utility Functions

The utility functions are only available on UNIX platforms:

VLSscheduleEvent

Syntax int VLSscheduleEvent(
unsigned long *seconds,
void *eventHandler,
long *repeat_event);

Utility Functions

Function Description

VLSscheduleEvent Schedules eventhandler to be awakened after so
many seconds. It handles only SIGALRM signal.

VLSdisableEvents Disables the events scheduled. To disable a particular
event pass the event handler function name as the
argument. To disable all the events pass NULL as
argument.

VLSeventSleep Disables the feature for an allotted time.
Sentinel LM Programmer’s Reference Manual 359

Chapter 11 – Utility Functions
Description This function is called for scheduling eventHandler to be awakened after so
many seconds. Handles only SIGALRM signal.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of
the error codes, Appendix C, “Sentinel LM Error and Result Codes,” on page
397.

VLSdisableEvents

Syntax int VLSdisableEvents(
void *eventHandler);

Description This function is called for disabling the events scheduled. To disable a partic-
ular event, pass the event handler function name as the argument. To
disable all the events, pass NULL as argument.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of
the error codes, Appendix C, “Sentinel LM Error and Result Codes,” on page
397.

Argument Description

seconds Time interval in seconds.

eventHandler Signal handler.

repeat_event Number of event repetitions.

Argument Description

eventHandler Signal handler.
360 Sentinel LM Programmer’s Reference Manual

VLSeventSleep

Syntax int VLSeventSleep(
void VLSeventSleep (unsigned int seconds));

Description This function is called for disabling the license operations for an allotted
time and interferes with the system alarms.

VLSeventSleep must be used in conjunction with VLSdisableAutoTimer.

Returns The status code LS_SUCCESS is returned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of
the error codes, Appendix C, “Sentinel LM Error and Result Codes,” on page
397.

Argument Description

seconds Time in seconds to sleep.
Sentinel LM Programmer’s Reference Manual 361

Chapter 11 – Utility Functions
362 Sentinel LM Programmer’s Reference Manual

Appendix A
Sample Applications

Sentinel LM installs a few sample applications on your computer. These
sample applications can be located at \Rainbow Technologies\Sentinel
LM\7.X.X\English\MsvcDev\Sample.

On the UNIX platforms the following components/files are available:

Customization Sample Files on UNIX

Component File(s)

linking Makefile

the license manager server.o

lsdecode lsde.o

lslic lslic.c

lsmon lsmon.c

lswhere lswhere.c

Challenge-response crexamp.c, chalresp.[c h], md4.[c h]
Sentinel LM Programmer’s Reference Manual 363

Appendix A – Sample Applications
On the Windows platforms the following components/files are available:

Customization Sample Files on Windows

Component File(s)

the license server lservdown.[c dsp], lserv.h

licence generator echoid32.dsp, echomain.c

lslic lslic.[c dsp]

lsmon lsmon.[c dsp]

lswhere lswhere.[c dsp dsw ncb opt]

Challenge-response crexamp.c, chalresp.[c h], md4.[c h]

Sample function macros dots, bounce
364 Sentinel LM Programmer’s Reference Manual

Appendix B
Customization Features

The Sentinel LM package is optionally shipped with a number of precom-
piled object modules to enable you to re-link the license manager and the
code generator executable, and override certain predefined Sentinel LM
characteristics.

There are compatibility issues for object files generated by different versions
of compilers on Microsoft Windows platforms. Therefore, server.o and lsc-
gen.o files are not included in the Windows distribution. Please contact
Technical Support (see page xxv) for information about customization tools
availability for your version of Windows developer platforms.

The following table summarizes the customizing functions:

Customizing Functions

Functions Description

VLSserverVendorInitialize Initializes the server.

VLSeventAddHook Registers an event handler with the
server.

VLSconfigureTimeTamper Defines the criteria on which time
tampering is detected.

VLSisClockSetBack Notifies the license server to check
whether the clock has been set back.

VLSencryptLicense Encrypts license codes.
Sentinel LM Programmer’s Reference Manual 365

Appendix B – Customization Features
Note: On the UNIX platform, creating customized executables requires the use of
the Makefile in the examples directory and various object files provided in
the lib directory of the shipped software. If you customize your license
server, ship it under a different name from the original and change the
port number on which it receives network messages so that your custom-
ized server does not interfere with other vendors’ license servers that may
be running at a customer's site.

All customized encryption and decryption functions for the network
licenses must adhere to the following rules:

1. No malloc or free calls are allowed in the functions.

2. No signal-unsafe calls are allowed.

3. All strings must be NULL-terminated.

4. All functions must return 0 on success.

5. Buffers are guaranteed to be at least 500 characters long. Lengths of
output strings need not be the same as the input strings.

To build your customized functions, copy your source files to c:\Program
Files\Rainbow Technologies\Sentinel LM\MsvcDev\custom. In this directory
you will find the Makefile custom32.mak. Make a copy of this file and name it
MAKEFILE. Edit this file. Add your customized object files in the following
section:

VLSdecryptLicense Decrypts license codes.

VLSencryptMsg Encrypts messages.

VLSdecryptMsg Decrypts messages.

VLSchangePortNumber Changes the port number.

Customizing Functions (Continued)

Functions Description
366 Sentinel LM Programmer’s Reference Manual

Initializing the Server
For now, use the default functions from the Sentinel
LM library:
ENCRYPT_LIC_OBJS =
DECRYPT_LIC_OBJS =
ENCRYPT_MSG_OBJS =
DECRYPT_MSG_OBJS =
CHANGE_PORT_OBJS =
CHANGE_HOSTID_OBJS =
TIME_TAMPER_OBJS =
SERVER_HOOK_OBJS =

Go to the DOS prompt and run make.

Initializing the Server

These functions are called by the server during server initialization. This is
where calls to VLSeventAddHook should be placed in order to configure the
server to consult vendor event handler functions.

VLSserverVendorInitialize

Description Initializes the server.

Syntax LSERV_STATUS VLSserverVendorInitialize (void);

This function has no arguments.

VLSeventAddHook

Registers an event handler with the server.

Client Server Static Library DLL

Client Server Static Library DLL
Sentinel LM Programmer’s Reference Manual 367

Appendix B – Customization Features
Syntax LSERV_STATUS VLSeventAddHook(
int eventName,
int
(*handlerFuncPtr)(VLShandlerStruct*,char*,char*,int),
char *identifier);

Description Hooks are based on events. For each event, there is a pre-event hook and a
post-event hook.

Currently the only events with hooks are license request and license release.
So you can have a hook function BEFORE a license request is processed by
the server or AFTER a request is processed. In the “pre” hook, you can
decide on the licensing action such as looking up external information
before granting a request. In the post hook, you cannot change the license
decision but can provide custom information to be passed to the client.

Note: You can use only one hook and do not have to use all the hook functions.

The file below for this example can be found in srhkdemo.c. The entire sample
hook project can be found in the following files: reqprhk1.c, reqpshk1.c,

Argument Description

eventName Specifies the type of event.
■ Handler function will be called LS_REQ_PRE

right before the license request is processed by
the server.

■ Handler function will be passed LS_REQ_POST
right after the license request is processed by
the server.

■ Handler function will be called LS_REL_PRE
right before the license release is processed by
the server.

■ Handler function will be passed LS_REL_PODY
right after the license release is processed by
the server.

(*handlerFuncPtr)
(VLShandlerStruct *,
char*, char *, int)

The function pointer.

identifier The client identifier to match.
368 Sentinel LM Programmer’s Reference Manual

Initializing the Server
relprhk1.c, relpshk1.c, relpshk1.c, reqprhk2.c, reqpshk2.c, and relprhk2.c. The
client portion of the project can be found in hookdemo.c.

/**/
/* */
/* Copyright (C) 2004 Rainbow Technolgies, Inc. */
/* All Rights Reserved */
/* */
/***/

#include "lservcst.h"
extern int LSReqPreHook1(VLShandlerStruct
*handleStruct, char *inBuf, char *outBuf, int outBufSz);
extern int LSReqPostHook1(VLShandlerStruct *handleStruct,
char *inBuf, char *outBuf, int outBufSz);
extern int LSRelPreHook1(VLShandlerStruct *handleStruct, char
*inBuf, char *outBuf, int outBufSz);
extern int LSRelPostHook1(VLShandlerStruct *handleStruct,
char *inBuf, char *outBuf, int outBufSz);
extern int LSReqPreHook2(VLShandlerStruct *handleStruct, char
*inBuf, char *outBuf, int outBufSz);
extern int LSReqPostHook2(VLShandlerStruct *handleStruct,
char *inBuf, char *outBuf, int outBufSz);
extern int LSRelPreHook2(VLShandlerStruct *handleStruct, char
*inBuf, char
*outBuf, int outBufSz);
extern int LSRelPostHook2(VLShandlerStruct *handleStruct,
char *inBuf, char
*outBuf, int outBufSz);
LSERV_STATUS VLSserverVendorInitialize(void) {
#ifndef _VWIN31X_
 VLSeventAddHook(LS_REQ_PRE, LSReqPreHook1,"Hook1");
VLSeventAddHook(LS_REQ_POST, LSReqPostHook1,"Hook1");

 VLSeventAddHook(LS_REL_PRE, LSRelPreHook1, "Hook1");
 VLSeventAddHook(LS_REL_POST, LSRelPostHook1, "Hook1");
 VLSeventAddHook(LS_REQ_PRE, LSReqPreHook2, "Hook2");
 VLSeventAddHook(LS_REQ_POST, LSReqPostHook2, "Hook2");
 VLSeventAddHook(LS_REL_PRE, LSRelPreHook2, "Hook2");

VLSeventAddHook(LS_REL_POST, LSRelPostHook2, "Hook2");
#endif
return(LSERV_STATUS_SUCCESS);
}

Sentinel LM Programmer’s Reference Manual 369

Appendix B – Customization Features
Protecting Against Time Clock Changes

Software-based license protection schemes may break down if the end user
changes the system time. The Sentinel LM license server can be configured
to detect tampering of the system clock.

In case of UNIX systems Sentinel LM checks about 500 system files (in
strictly read-only mode) to determine if the system clock of the machine it is
running on has been set back in order to use an expired license. It does this
on startup, and periodically thereafter. Checking takes about 10 to 20 sec-
onds. Sentinel LM calls the function VLSconfigureTimeTamper before
performing any time tamper checks. However, even on UNIX systems, Senti-
nel LM may not be able to detect time tampering if the system is running for
a long time (in the time tampered mode) before the Sentinel LM server has
been started. Also the Sentinel LM server may stop detecting time tampering
if all the files (that it is checking) start having the same time stamp.

VLSconfigureTimeTamper function can be used to modify the default
behavior of Sentinel LM regarding time tamper checking. You need to per-
form the following steps:

1. Write your own VLSconfigureTimeTamper function which takes the
following arguments, and writes valid values into all of the argu-
ments.

2. If you plan to use your own clock tamper checking function, you
should write another function VLSisClockSetBack which returns 0 if
the system clock has not been set back, and 1 otherwise.

3. In the Makefile in the examples directory, modify the
TIME_TAMPER_OBJ macro so that its value is the name of the object
file containing your new function(s).

4. Relink the license server (or your application if in stand-alone mode).
370 Sentinel LM Programmer’s Reference Manual

Protecting Against Time Clock Changes
VLSconfigureTimeTamper

Syntax void VLSconfigureTimeTamper(
VLSactionOnTmTamper *actionOnTmTamper,
VLStmTamperMethod *tmTamperMethod,
int *gracePeriod,
int *percentViolations,
int *numViolationsForError);
int VLSisClockSetBack();

Types VLSactionOnTmTamper and VLStmTamperMethod are defined in
lserv.h:

typedef enum {VLS_CONT_AFTER_TM_TAMPER,
VLS_EXIT_AFTER_TM_TAMPER}
VLSactionOnTmTamper;

typedef enum {VLS_ENABLE_DEFAULT_TM_TAMPER,
VLS_DISABLE_DEFAULT_TM_TAMPER}
VLStmTamperMethod;

Client Server Static Library DLL
Sentinel LM Programmer’s Reference Manual 371

Appendix B – Customization Features
In the table below, default values are indicated in brackets ([]).

The default algorithm uses a grace period of 86,400 seconds (1 day) and
allows 1% of the files to violate the grace period.

Note: If both percentViolations and numViolationsForError are used, the lower
evaluated value will be used.

Argument Description

actionOnTmTamper Whether to exit from the license manager (or your
application if in stand-alone mode) once time
clock tampering is detected.
[VLS_CONT_AFTER_TM_TAMPER]

tmTamperMethod Whether to use the Sentinel LM built-in system
clock tamper checking function, or use one
provided by you.
[VLS_ENABLE_DEFAULT_TM_TAMPER]

gracePeriod Useful only in case tmTamperMethod is
VLS_ENABLE_DEFAULT_TM_TAMPER. If Sentinel
LM finds the system clock has been set back by less
than gracePeriod seconds, it will not count the
offending system file as a violation.

percentViolations Percentage of system files that must be found in
violation of the grace period before concluding
that the system clock has been set back. Pass the
value of 0 for this argument to ignore the
functionality.

numViolationsForError Number of system files that must be found in
violation of the grace period before concluding
that the system clock has been set back. [5] 0 to
ignore this.
372 Sentinel LM Programmer’s Reference Manual

Encrypting License Codes
VLSisClockSetBack

Notifies the license server to check whether the clock has been set back.

Syntax int VLSisClockSetBack();

This function has no arguments.

Description This function is called only in case the VLSconfigureTimeTamper function
returns tmTamperMethod to be VLS_DISABLE_DEFAULT_TM_TAMPER.

Returns Returns 0 if the clock has not been set back.

Encrypting License Codes

License code encryption can be modified to add an additional layer of
encryption/decryption security. License encryption and decryption is used
by the license server, the code generator, and the Sentinel LM utility, lsde-
code. All three programs must be re-linked. Licensed applications do not
encrypt or decrypt license codes. Client applications need not be re-linked.

Note: Encryption is not available for stand-alone licenses.

Client Server Static Library DLL
Sentinel LM Programmer’s Reference Manual 373

Appendix B – Customization Features
VLSencryptLicense

Encrypts license codes.

Syntax int VLSencryptLicense(

char *origText;

char *encryptedTextBuffer;
int buffSize);

Description VLSencryptLicense will always receive any of the ASCII character set in its
input text string. Since the output of this function will be written directly to
the code generator’s output file as an encrypted license code, this function
must not generate any unprintable or special characters.

The function may generate any printable ASCII characters other than:

Client Server Static Library DLL

Argument Description

origText The original license code.

encryptedTextBuffer (OUT) The encrypted license code to be returned.

buffSize Size of the encrypted text buffer.

Character Hex Value Description

0x23 Pound sign or number sign or hash mark.

\n 0x0A Backslash-n.

\t 0x09 Backslash-t.

(0x28 Opening parenthesis.

) 0x29 Closing parenthesis.

- 0x2D Hyphen or dash or minus sign.

, 0x2C Comma.
374 Sentinel LM Programmer’s Reference Manual

Encrypting License Codes
In fact, by generating a larger character set than the input, the encryption
algorithm can generate shorter license codes. To add another layer of
encryption and decryption follow these steps:

1. Write custom VLSencryptLicense and VLSdecryptLicense functions in
separate source files.

2. In the examples directory of the distribution tree, the example Makefile
can be used to re-link the license server, the code generator, and
lsdecode directly. In the example Makefile, set the variable,
ENCRYPT_LIC_OBJ, to the object file containing VLSencryptLicense,
and DECRYPT_LIC_OBJ to the object file containing
VLSdecryptLicense.

3. Issue the make commands for the license server, the code generator,
lsdecode, and the distributor’s code generator (optional).

Returns 0 if successful; other value on failure.

Example file:

/***/
/* */
/* Copyright (C) 2004 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/***/
/* Usage of VLSencryptLicense() */
#include <stdio.h>
#include <string.h>
#include "lstest.h"
int VLSencryptLicense(outputString,inputString,size)
char outputString[MAX_LIC_SIZE];
char inputString[MAX_LIC_SIZE];
int size;
{
 int j=0;
 fprintf(stdout,"ENCRYPTING LICENSE\n");
 while ((outputString[j]!='\0')&&(outputString[j+1]!='\0') &&
(outputString[j]!='\n')&&(outputString[j+1]!='\n') &&
(j<size)) {
 inputString[j]=outputString[j+1];
Sentinel LM Programmer’s Reference Manual 375

Appendix B – Customization Features
 inputString[j+1]=outputString[j];
 j=j+2;
 }
inputString[j]=outputString[j];
j++;
if (outputString[j]=='\0') {inputString[j]=outputString[j];
j++;}
if (outputString[j]=='\n') {inputString[j]=outputString[j];
j++;}
return(0);
}

VLSdecryptLicense

Decrypts license codes.

Syntax int VLSdecryptLicense (

char *origText;
char *decryptedTextBuffer;
int buffSize);

Client Server Static Library DLL

Argument Description

origText The original license code.

decryptedTextBuffer (OUT) The decrypted license code to be returned.

buffSize Size of the decrypted text buffer.
376 Sentinel LM Programmer’s Reference Manual

Encrypting License Codes
Description See VLSencryptLicense above.

Example file:

/**/
/* */
/* Copyright (C) 2004 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/***/
/* Usage of VLSdecryptLicense() */
#include <stdio.h>
#include <string.h>
#include "lstest.h"
int VLSdecryptLicense(outputString,inputString,size)
char outputString[MAX_LIC_SIZE];
char inputString[MAX_LIC_SIZE];
int size;
{
 int j=0;
 fprintf(stdout,"DECRYPTING LICENSE\n");
 while ((outputString[j]!='\0')&&(outputString[j+1]!='\0') &&
 (outputString[j]!='\n')&&(outputString[j+1]!='\n') &&
 (j<size)) {
 inputString[j]=outputString[j+1];
 inputString[j+1]=outputString[j];
 j=j+2;
 }
 inputString[j]=outputString[j];
 j++;
 if (outputString[j]=='\0') {inputString[j]=outputString[j];
 j++;}
 if (outputString[j]=='\n') {inputString[j]=outputString[j];
 j++;}
 return(0);
}

Sentinel LM Programmer’s Reference Manual 377

Appendix B – Customization Features
Encrypting Messages

All Sentinel LM network communication is encrypted. However, for added
security an additional layer of encryption and decryption can be added. Cus-
tomizing involves changes to both the license server and the client
application.

VLSencryptMsg

Encrypts messages.

Syntax int VLSencryptMsg(

char *origText;
char *encryptedTextBuffer;
int buffSize);

Description VLSencryptMsg can receive any ASCII characters as its input text string.
The function can produce any ASCII characters other than \0 (0x0). To add
another layer of encryption and decryption follow these steps:

1. Write custom VLSencryptMsg and VLSdecryptMsg functions in sepa-
rate source files.

2. In the examples directory of the distribution tree, the example Makefile
can be used to re-link the license server directly and edited to link with
the application to be licensed using the new message encryption. In
the example Makefile, set the variable, ENCRYPT_MSG_OBJ, to the
object file containing VLSencryptMsg, and DECRYPT_MSG_OBJ to
the object file containing VLSdecryptMsg.

Client Server Static Library DLL

Argument Description

origText The original message text.

encryptedTextBuffer (OUT) The encrypted message text.

buffSize Size of the encrypted text buffer.
378 Sentinel LM Programmer’s Reference Manual

Encrypting Messages
3. Issue the make commands for the license server and the application.
The client application must be incrementally linked with the new
object files before linking with the Sentinel LM client library.

Returns 0 if successful; other value on failure.

Example file:

/**/
/* */
/* Copyright (C) 2004 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/**/
/* Usage of VLSencryptMsg() */
#include <stdio.h>
#include <string.h>
#include "lstest.h"
int VLSencryptMsg(outputString,inputString,size)
char outputString[MAX_MSG_SIZE];
char inputString[MAX_MSG_SIZE];
int size;
{
 int j=0;
 fprintf(stdout,"encrypting MESSAGE\n");
 while ((outputString[j]!='\0')&&(outputString[j+1]!='\0') &&
 (outputString[j]!='\n')&&(outputString[j+1]!='\n') &&
 (j<size)) {
 inputString[j]=outputString[j+1];
 inputString[j+1]=outputString[j];
 j=j+2;
 }
 inputString[j]=outputString[j];
 j++;
 if (outputString[j]=='\0') {inputString[j]=outputString[j];
 j++;}
 if (outputString[j]=='\n') {inputString[j]=outputString[j];
 j++;}
 return(0);
}

Sentinel LM Programmer’s Reference Manual 379

Appendix B – Customization Features
VLSdecryptMsg

Decrypts messages.

Syntax int VLSdecryptMsg(

char *origText,

char *decryptedTextBuffer,
int buffSize);

Description See VLSencryptMsg on the previous page.

Example file:

/**/
/* */
/* Copyright (C) 2004 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/**/
/* Usage of VLSdecryptMsg() */
#include <stdio.h>
#include <string.h>
#include "lstest.h"
int VLSdecryptMsg(outputString,inputString,size)
char outputString[MAX_MSG_SIZE];
char inputString[MAX_MSG_SIZE];
int size;
{
 int j=0;
 fprintf(stdout,"decrypting MESSAGE \n");
 while ((outputString[j]!='\0')&&(outputString[j+1]!='\0')
 && (j<size)) {
 inputString[j]=outputString[j+1];

Client Server Static Library DLL

Argument Description

origText The original message text.

decryptedTextBuffer (OUT) The decrypted message text.

buffSize Size of the decrypted text buffer.
380 Sentinel LM Programmer’s Reference Manual

Changing the Default Port Number
 inputString[j+1]=outputString[j];
 j=j+2;
 }
 inputString[j]=outputString[j];
 j++;
 if (outputString[j]=='\0'){inputString[j]=outputString[j];}
 return(0);
}

Changing the Default Port Number

This requires separate changes to the license server and the licensed
application.

VLSchangePortNumber

Changes the port number.

Syntax int VLSchangePortNumber(
int currentPort);

Description Sets port number to newPort.This function should be called only once, at
license server start-up time.

The licensed application can obtain or reset its port number through the cli-
ent library function calls, VLSgetServerPort and VLSsetServerPort. These
setup functions must be called before making a request.

Returns 0 if successful; other value on failure.

Note: Optionally, you may change the port number by using the port switch
when starting the license server.

Client Server Static Library DLL

Argument Description

currentPort Current port number.
Sentinel LM Programmer’s Reference Manual 381

Appendix B – Customization Features
Example file:

/**/
/* */
/* Copyright (C) 2004 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/**/
#include "lservcst.h"
#include "lserv.h"
#include <stdio.h>
#ifdef __STDC__
int VLSchangePortNumber(int newPort)
#else
int VLSchangePortNumber(newPort)
int newPort;
#endif
{
 newPort=6000;
 return(newPort);
}getCustomHostId

Customizing the Host ID

Sentinel LM provides a developer with the capability to have a client send a
customized fingerprint along with standard fingerprints as determined by
the client library.

In making a request for a key for a particular feature/version, the client
sends the information about the fingerprints (IP Address, host name, PROM
ID etc.) of its host machine. This fingerprint information is then compared
against the fingerprint information available with the server, through the
license string for that feature/version.

Customizing a host ID consists of performing the following steps:

■ Create the custom host ID function

■ Register the custom host ID function on the server

■ Register the custom host ID function on the client

■ Build the server
382 Sentinel LM Programmer’s Reference Manual

Customizing the Host ID
■ Create an updated client ID generator

Creating the Custom Host ID Function

The first step to implement the customized fingerprint is to write a custom
host ID (basically a customized fingerprint) function. This function must
return a “long” value, based on the customized logic that is unique for each
host. The following is an example of generating a custom host ID. In this
example, the custom host ID is being generated by converting each of the
standard machine fingerprints to integer values, and then adding them all
together.

long getCustomHostId()
{
VLSmachineID machineID;
unsigned long lock_selector_out,temp1, temp2; long temp;
VLSinitMachineID(&machineID);/*Set default values.*/
/*Get the locking information for all available locking
mechanisms*/
VLSgetMachineID(VLS_LOCK_ID_PROM|VLS_LOCK_IP_ADDR|VLS_LOCK_DI
SK_ID|VLS_LOCK_HOSTNAME|VLS_LOCK_ETHERNET|VLS_LOCK_NW_IPX|VLS
_LOCK_NW_SERIAL|VLS_LOCK_PORTABLE_SERV,&machineID,&lock_selec
tor_out);

temp2 = machineID.id_prom;
temp1 = 0;

/*Check to see if we were able to generate locking info for
each criteria. If so, convert that info to an unsigned long
and add it to the sum */
if ((machineID.ip_addr != NULL) && (machineID.ip_addr[0] !=
'\0'))/*checking for presence*/
temp1 = strtoul(machineID.ip_addr, (char **)NULL, 10);

temp2 += temp1 + machineID.disk_id;
if ((machineID.host_name != NULL) && (machineID.host_name[0]
!= '\0'))

temp1 = strtoul(machineID.host_name,(char **)NULL,10);
temp2 += temp1;
if ((machineID.ethernet != NULL) && (machineID.ethernet[0] !=
'\0'))
temp1 = strtoul(machineID.ethernet, (char **)NULL, 10);
Sentinel LM Programmer’s Reference Manual 383

Appendix B – Customization Features
temp2 += temp1 + machineID.nw_ipx + machineID.nw_serial;
if ((machineID.portserv_addr != NULL) &&
(machineID.portserv_addr[0] != '\0'))
temp1 = strtoul(machineID.portserv_addr,(char **)NULL,10) ;
temp2 += temp1;
temp2=temp2 / 200; /*just to customise hostid */
temp=temp2 + 10;
return temp; /*return long */
}

Registering the Custom Host ID Function on the Server

The function used to register the function with the server is
VLSsetHostIdFunc, which we call from within

VLSserverVendorInitialize, VLSserverVendorInitialize is called when the
server first starts to run. Here you inform the server of the name of the func-
tion which it can use to return the custom host ID by calling
VLSsetHostIdFunc. Below is an example using a custom host ID function
named getCustomHostID. This code should be put into a separate c file.

extern long getCustomHostId();
LSERV_STATUS VLSserverVendorInitialize(void)
{
 VLSsetHostIdFunc(&getCustomHostId);
 return(LSERV_STATUS_SUCCESS);
}

Registering the Custom Host ID Function on the Client

Here you need to call VLSsetHostIdFunc in the client application. in the
same manner as was done in VLSserverVendorInitialize above.

main(int argc,char ** argv){
 VLSinitialize();
 VLSsetHostIdFunc();
 VLSrequest();
}

384 Sentinel LM Programmer’s Reference Manual

Customizing the Host ID
Building the Server

Build the new customized lserv by linking it to files that contain code for
getCustomHostId and VLSserverVendorInitialize using Custom32.mak.

In this step the object files for the C files generated in the first two steps need
to be linked with the server library.

Creating an Updated Client ID Generator

You will need to create an updated client ID generator (echoid.exe). The file,
myechoid.c, takes the host ID from the getCustomHostId function and prints
it in hex. Sample code is shown below:

extern long getCustomHostId();
long main(int argc,char ** argv)
{
 long customid;
 customid=getCustomHostId();
 printf("0x%lX",customid);
}

Using a Customized Host ID

The sequence of events for an application using a custom ID is as follows:

1. Generate client node lock and/or server node locked licenses with the
custom host ID as returned by myechoid.exe.

2. Rebuild and execute the customized lserv.

3. In the client application set the host ID function to getCustomHostId.

Now the client side host ID has been changed.

4. Add the client node lock license to the server.

When an application tries to request a key for a client node-locked
license, the server then verifies the client host ID as sent in the request
message and compares it with the host ID in the license.
Sentinel LM Programmer’s Reference Manual 385

Appendix B – Customization Features
5. In the case of server locking to a customized host ID, when a server-
locked license is added to the server, it executes the VLSserverVen-
dorInitialize function and gets the host ID for the server then checks it
against the host ID in the license.

Customizing Upgrade Licenses

As a developer you may want to write your own encryption and decryption
algorithm. The Sentinel LM upgrade license generator library allows you to
write your own algorithm using the following API:

VLSencryptUpgradeLicense

Syntax int VLSencryptUpgradeLicense
(
 char *original_text,
 char *encrypted_text_buffer,
 int buff_size
);

Definition This API can be used to write encryption algorithm for upgrade licenses
over the default encryption algorithm provided by the upgrade license gen-
erator library.

Returns

Argument Type Description

original_text IN The string to be encrypted

encrypted_text_buffer OUT The resultant string after encryption

buff_size IN Length of the output buffer.

Error Code Description

0 Success

Any other value Failure
386 Sentinel LM Programmer’s Reference Manual

Setting License Server Information
VLSdecryptUpgradeLicense

Syntax int VLSdecryptUpgradeLicense
(
 char *original_text,
 char *decrypted_text_buffer,
 int buff_size
);

Definition This API can be used to write decryption algorithm for upgrade licenses over
the default decryption algorithm provided by the upgrade license generator
library.

Returns

Setting License Server Information

A customizable API, VLSsetServerInfo, is provided to allow the developer to
customize his server by setting vendor -specific information in his license
server which can be returned to the client using the VLSgetServInfo call. See
“Retrieving Information About a License Server (VLSgetServInfo)” on
page 125.

Setting Vendor Specific Information in a License Server
(VLSsetServerInfo)

By using this call and rebuilding the license server (as you do when custom-
izing the license server for custom locking), you can set a string value of up

Argument Type Description

original_text IN The string to be decrypted

encrypted_text_buffer OUT The resultant string after encryption

buff_size IN Length of the output buffer.

Error Code Description

0 Success

Any other value Failure
Sentinel LM Programmer’s Reference Manual 387

Appendix B – Customization Features
to 50 characters to be written to the license server to serve as identification.
(This string can be returned by the VLSgetServInfo call in the vendor_info
field of the VLSservInfo structure to verify that the license server is the cor-
rect one.)

Syntax LSERV_STATUS VLSsetServerInfo(
char **vendorInfo);

Returns Returns zero if successful.

Customizing Stand-alone License File Names
(VLSsetFileName)

Sentinel LM reads a number of files to determine what licenses are available
and how the license server should operate. For stand-alone applications,
these files are:

■ lservrc - license file, which contains one or more license strings.

■ lservrccnf - license server configuration file, which contains license
server options.

Although the names of these files can be changed by the developer by using
the appropriate environment variable, this can cause a conflict if multiple
stand-alone applications from different developers are installed on the same
computer since only one environment variable affects the entire computer.
If environment variables aren’t used, the default license file can be overwrit-
ten by one from a different developer when a new application is installed.

The VLSsetFileName call is now available to set these file names from within
the application.

Note: VLSsetFileName should be used before calling VLSinitialize.

This call can only be used with stand-alone or integrated client libraries.

Argument Direction Description

vendorInfo OUT String of up to 50 characters to write
to the license server as identification.
388 Sentinel LM Programmer’s Reference Manual

Using a Custom Locking Code
Syntax LS_STATUS_CODE VLSsetFileName(
 VLS_FILE_TYPE fileType,
 unsigned char *fileName,
 unsigned char *unused1,
unsigned long *unused2);

Returns The status code LS_SUCCESS is returned if successful. Otherwise, a specific
error code is returned indicating the reason for the failure. Possible error
codes returned by this call include: VLS_INVALID_FILETYPE and
VLS_NOT_APPROPRIATE_LIBRARY.

For a complete list of error codes, see “Sentinel LM Error and Result Codes”
on page 397.

Using a Custom Locking Code

A custom locking code requires the following components:

1. A rebuilt license server that uses the custom ID function. For example,
lserv9x or lservnt.

2. A rebuilt echoid.exe that uses the same custom ID function as the
license server.

3. A modified client application.

Argument Direction Description

filetype IN Selects the type of license file you are
going to provide a customized name
for. Set to one of the following:
■ VLS_LSERVRC
■ VLS_LSERVRCCNF

fileName IN Custom name you want to use.

unused1 Reserved. Use NULL for this value.

unused2 Reserved. Use NULL for this value.
Sentinel LM Programmer’s Reference Manual 389

Appendix B – Customization Features
Step 1 - Rebuilding License Server

Compiler Required

A Microsoft Visual C++ 6.0 compiler is required.

Note: It is possible to use other compilers, but instructions below are for the
Microsoft Visual C++ compiler. Please contact Rainbow if you are using
another compiler and require assistance.

Files Required

The following files are required for rebuilding the license server:

Note: lserv95.res, lserv9x.lib, lserv9x.dsp, and lserv9x.dsw files can be slightly dif-
ferent when working with Windows NT or Windows 2000.

Files required to rebuild the License Server

FIle Name Description

ServerInit.cpp C++ source file containing re-definition of
VLSserverVendorInitialize function.

CustomHostID.cpp C++ source file containing custom locking code definition.

CustomHostID.h C++ include file containing custom locking code
prototype.

lsmainwa.c C source file containing entry point to license server
application.

lserv.h Sentinel LM include file installed during Sentinel LM
installation.

lserv95.res Resource file for license server application.

lserv9x.lib Sentinel LM static library installed during Sentinel LM
installation.

lserv9x.dsp Microsoft Visual C++ 6.0 project file.

lserv9x.dsw Microsoft Visual C++ 6.0 workspace file.
390 Sentinel LM Programmer’s Reference Manual

Using a Custom Locking Code
Required Changes to Server Source Code

A Sentinel LM license server with custom locking code will differ from a
default license server because VLSserverVendorInitialize is redefined so that
it will call VLSsetHostIdFunc. VLSserverVendorInitialize is called during
server startup for both default license servers and custom license servers,
but the default version does not call VLSsetHostIdFunc.

VLSsetHostIdFunc accepts as a parameter the name of the function which
will return the custom locking code. This locking code must be calculated in
a consistent long value; not a random value. You are free to implement any
algorithm in order to produce the locking code, as long as the algorithm
generates a reproducible value.

VLSserverVendorInitialize is automatically called during server startup.
However, for servers that initialize custom locking code, VLSserverVen-
dorInitialize is redefined to call VLSsetHostIdFunc(functionName).
functionName is the name of the custom locking code function and GetCus-
tomLockCode is the name of the custom locking code function, both
described above. GetCustomLockCode is provided only as an example name.

Steps to Rebuilding the License Server

1. Obtain a zip file from Rainbow Technologies that contain all the nec-
essary files. Please see “Files Required” on page 390. Unzip the zip file
into a directory of your choice.

2. Open the workspace file corresponding to the customized license
server project. For example, if you have a 9x license server, then you
will need to open the lserv9x.dsw project file.

3. Modify the source code. See “Required Changes to echoid.exe” on
page 393.

4. Choose Rebuild All from the Build menu.
Sentinel LM Programmer’s Reference Manual 391

Appendix B – Customization Features
Step 2 - Rebuilding echoid.exe

In order to add a license locked to a custom criteria, a rebuilt echoid.exe is
also required. The rebuilt echoid.exe will be used to produce a fingerprint rel-
ative to the custom locking code function. This fingerprint can then be used
to generate locked licenses that utilize the custom locking criteria.

Compiler Required

A Microsoft Visual C++ 6.0 compiler is required.

Note: It is possible to use other compilers, but instructions below are for the
Microsoft Visual C++ compiler. Please contact Rainbow if you are using
another compiler and require assistance.

Files Required for echoid.exe

The following files are required in rebuilding echoid.exe:

Files required to rebuild echoid.exe

File Name Description

CustomHostID.c C source file containing custom locking code definition.

CustomHostID.h C include file containing custom locking code prototype.

echoid.c C source file containing logic for generating fingerprints.
Notice, this file will be modified to call the custom locking
code function.

lscgen.h Sentinel LM include file installed during Sentinel LM
installation.

lserv.h Sentinel LM include file installed during Sentinel LM
installation.

lsapiw32.lib Import library for Win32 run-time DLL that is installed
during Sentinel LM installation.

echoid.dsp Microsoft Visual C++ 6.0 project file

echoid.dsw Microsoft Visual C++ 6.0 workspace file
392 Sentinel LM Programmer’s Reference Manual

Using a Custom Locking Code
Required Changes to echoid.exe

Rebuilding echoid.exe only requires a slight modification to the source code.
Before calling VLSgetMachineID, call VLSsetHostIdFunc(functionName),
where functionName is the name of the custom locking code function.

Again, using GetCustomLockCode as the name of the custom lock code func-
tion, the sequence of function calls will be as follows:

■ Rest of echoid source

■ VLSsetHostIdFunc(GetCustomLockCode)

■ VLSgetMachineID

■ Rest of echoid source

Steps to Rebuilding echoid.exe

1. Obtain a zip file from Rainbow Technologies that contain all the nec-
essary files. Please see “Files Required for echoid.exe” on page 392.
Unzip the zip file into a directory of your choice.

2. Open the workspace file corresponding to the customized license
server project.

3. Modify the source code. See “Required Changes to echoid.exe” on
page 393.

4. Choose Rebuild All from the Build menu.

Step 3 - Modifying Client Application

The client application should also make a call to VLSsetHostIdFunc. This
function call needs to be performed before a license request is issued. In
doing this, a developer guarantees that both the client-locked licenses and
server-locked licenses will be handled. Also, the client application will not be
adversely affected by this function call if the default license server, rather
than the custom license server, is used. Please see “Required Changes to
echoid.exe” on page 393.
Sentinel LM Programmer’s Reference Manual 393

Appendix B – Customization Features
Overall Process of Using a Rebuilt License Server and
Rebuilt echoid.exe

1. Decide on an algorithm for generating a custom locking code. Notice,
this locking code needs to be a reproducible long value.

2. Rebuild license server. See “Step 1 - Rebuilding License Server” on
page 390.

3. Rebuild echoid.exe. See “Step 2 - Rebuilding echoid.exe” on page 392.

4. Edit echoid.dat so that the custom locking criteria is a criteria mask.
This step may not be needed if the custom locking criteria mask is the
default mask in the rebuilt echoid.exe.

5. Execute the rebuilt echoid.exe.

6. Generate server-locked licenses with the fingerprint obtained from the
rebuilt echoid.exe as the primary criteria.

7. Add licenses to the rebuilt license server via lslic or via the license
server configuration file lservrc.

8. Modify the client application and rebuild it. See “Step 3 - Modifying
Client Application” on page 393.

9. Execute the client application.

Adding Additional Security to Licenses Generated
by WlscGen

In previous Sentinel LM releases, the developer could add an additional
layer of security to licenses created by lscgen by customizing lscgen using
the custom32.mak make file. This feature was not available for licenses gen-
erated by WlscGen, the Windows-interface license code generator, because
there was no way to customize WlscGen. To provide this same functionality
394 Sentinel LM Programmer’s Reference Manual

Adding Additional Security to Licenses Generated by WlscGen
to WlscGen, we now provide a make rule in the custom32.mak make file to
build a wlscgen.dll file to customize WlscGen.

Here is how to customize WlscGen:

1. Build a custom DLL named Wlscgen.dll, which uses the same object
files as those used for customizing the license server and lscgen,
defined by the variable ENCRYPT_LIC_OBJ in the custom32.mak
makefile provided in the \custom directory.

2. The makefile will copy the DLL file to the default location (the Sentinel
LM \Tools directory) of WlscGen.exe so that the licenses generated by
WlscGen will use the customized license encryption. If this is not the
location of WlscGen.exe on your computer, move the DLL file to the
directory containing WlscGen.exe.
Sentinel LM Programmer’s Reference Manual 395

Appendix B – Customization Features
396 Sentinel LM Programmer’s Reference Manual

Appendix C
Sentinel LM Error and Result
Codes

The following table lists LSAPI client function return codes and their default
messages:

LSAPI Client Function Return Codes

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description

0x0 00 LS_SUCCESS Successful completion
of function call.

0xC8001001 046 LS_BADHANDLE Bad index Handle given to
function represents an
invalid licensing system
context.

0xC8001002 047 LS_INSUFFICIENTUNITS Could not locate
enough
licensing
resources.

Not enough sufficient
resources to satisfy
LSRequest.

0xC8001003 048 LS_LICENSESYSNOT
AVAILABLE

Licensing System
not available.

Licensing system itself
is unavailable.
Sentinel LM Programmer’s Reference Manual 397

Appendix C – Sentinel LM Error and Result Codes
0xC8001004 049 LS_LICENSETERMINATED License
terminated
because renewal
time expired.

LSupdate failed.
License expired due to
time-out.

0xC8001005 044 LS_NOAUTHORIZATION
AVAILABLE

Could not find
the specified
client for the
feature.

License server does not
recognize this feature
name.

0xC8001006 051 LS_NOLICENSES
AVAILABLE

All licensing keys
are currently in
use.

License server has no
more license codes
available for this
request. All licenses are
in use.

0xC8001007 047 LS_NORESOURCES Could not locate
enough
licensing
resources.

Insufficient resources
(such as memory) are
available to complete
the request. An error
occurred in attempting
to allocate memory
needed by function.

0xC8001008 053 LS_NO_NETWORK Unable to talk to
the host
specified. Verify
client/server
communication.

Network
communication
problems encountered.

0xC80010009 034 LS_NO_MSG_TEXT The specified
filename can not
be found on
license server.

LSGetMessage unable
to retrieve message
text.

0xC800100A 055 LS_UNKNOWN_STATUS Unknown error
code, cannot
provide error
message.

Unknown or
unrecognized status
code was passed to
LSGetMessage.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
398 Sentinel LM Programmer’s Reference Manual

0xC800100B 056 LS_BAD_INDEX Bad index Invalid index specified
in LSEnumProviders or
any query functions.

0xC800100C 057 LS_NO_MORE_UNITS No additional
units are
available.

Additional licenses/
units requested are
unavailable.

0xC800100D 058 LS_LICENSE_EXPIRED Feature cannot
run due to time
restriction on it.
Contact your
software vendor.

Licensing agreement
for this feature has
expired.

0xC800100E 059 LS_BUFFER_TOO_
SMALL

Input buffer too
small, string
truncated.

Input buffer provided
to function is not large
enough to store the
license server’s name.
Need to input a larger
buffer.

0xC800100F 060 LS_NO_SUCCESS No success in
achieving the
target.

No success in achieving
the target.

1 001 VLS_NO_LICENSE_
GIVEN

Unable to obtain
licensing key.

Other internal error
not listed above.
Default: Display error
message, return error
code.

2 002 VLS_APP_UNNAMED Feature name or
version cannot
be NULL.

No feature name
provided with function
call. Default: Display
error message, return
error code.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
Sentinel LM Programmer’s Reference Manual 399

Appendix C – Sentinel LM Error and Result Codes
3 003 VLS_HOST_UNKNOWN Unknown
license server
host.

License server host
does not seem to be on
the network. Invalid
host name specified.
Default: Display error
message, return error
code.

4 004 VLS_NO_SERVER_FILE License server
hostname not
specified. Set
environment
variable LSHOST
to name the
license server.

Client not initialized
with the name of the
license server host. No
license server has been
set and unable to
determine which
license server to use.
Default: Get the host
name interactively
from the user.

5 005 VLS_NO_SERVER_
RUNNING

Cannot talk to
the license
server. Verify
license server is
running.

No license server seems
to be running on the
remote host. License
server on specified host
is not available for
processing the license
operation requests.
Default: Display error
message, return error
code.

6 006 VLS_APP_NODE_
LOCKED

Feature not
licensed to run
on this machine.

Server-locked feature
cannot be issued a
floating license code.
Default: Display error
message, return error
code.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
400 Sentinel LM Programmer’s Reference Manual

7 007 VLS_NO_KEY_TO_
RETURN

Attempt to
return a non-
existent key for
feature.

LSrelease was called
before the license code
was issued. Default:
Display error message.

8 008 VLS_RETURN_FAILED Cannot return
key for feature.

LSrelease failed to
return the issued
license code. Default:
Display error message,
return error code.

9 009 VLS_NO_MORE_
CLIENTS

No more clients
to report.

VLSgetClientInfo has
no more clients to
report. Default: No
action.

10 010 VLS_NO_MORE_
FEATURES

No more
features to
report.

LSgetFeatureInfo has
no more features to
report. Default: No
action.

11 011 VLS_CALLING_ERROR Error in calling
the function.
Check the calling
parameters.

VLS_CALLING_ERROR is
returned when ever an
incorrect value has
been provided as a
parameter for the API.
You need to check the
calling parameter of
the Sentinel LM API.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
Sentinel LM Programmer’s Reference Manual 401

Appendix C – Sentinel LM Error and Result Codes
12 012 VLS_INTERNAL_ERROR Internal error in
licensing or
accessing
feature.

VLS_INTERNAL_ERROR
is an internal error
message and is
returned whenever
some client internal
function fails in
performing some
operation.
Default: Display error
message, return error
code.

13 013 VLS_SEVERE_INTERNAL_
ERROR

Severe internal
error in licensing
or accessing
feature.

VLS_SEVERE_INTERNAL
_ERROR is internal to
Sentinel LM client
library and is returned
whenever client library
is unable to retrieve
either the system time
or while constructing
some internal message
for client-sever
processing. Default:
Display error message,
return error code.

14 014 VLS_NO_SERVER_
RESPONSE

License server
not responding.

The license server is not
responding due to
communication has
timed out. Default:
Display error message,
return error code.

15 015 VLS_USER_EXCLUDED User/machine
excluded from
running the
given feature.

The user/computer is
excluded by group
reservations. Dbfault:
Display error message,
return error code.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
402 Sentinel LM Programmer’s Reference Manual

16 016 VLS_UNKNOWN_
SHARED_ID

Unknown
shared id
specified.

The supplied sharing
criteria is unknown.
Default: Display error
message, return error
code.

17 017 VLS_NO_RESPONSE_TO_
BROADCAST

Probably no
license servers
running on this
subnet.

No license servers
responded to the
VLSdiscover call.
Default: Display error
message, return error
code.

18 018 VLS_NO_SUCH_
FEATURE

No license string
is available.

The license server does
not recognize the
given feature, version
and capacity. Default:
Display error message,
return error code.

19 019 VLS_ADD_LIC_FAILED Failed to add
license string to
the license
server.

Dynamic license
addition failed.
Default: Display error
message, return error
code.

20 020 VLS_DELETE_LIC_
FAILED

Failed to delete
feature from the
license server.

Dynamic license
deletion failed.
Default: Display error
message, return error
code.

21 021 VLS_LOCAL_UPDATE The last update
was done locally.

The last update was
done locally.

22 022 VLS_REMOTE_UPDATE The last update
was done
remotely.

The last update was
performed by
contacting the Sentinel
LM license server.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
Sentinel LM Programmer’s Reference Manual 403

Appendix C – Sentinel LM Error and Result Codes
23 023 VLS_VENDORIDMIS
MATCH

Feature licensed
by a different
vendor.

The license system has
those resources that
could satisfy the
request, but the vendor
code of requested
application does not
match with that of the
application licensed by
the license server.

24 024 VLS_MULTIPLE_
VENDORID_FOUND

Feature licensed
by multiple
vendors.

The license system has
licenses for the same
feature, version, and it
is not clear from the
requested operation
which license the
requestor is interested
in.

25 025 VLS_BAD_SERVER_
MESSAGE

Could not
understand
message
received from
the license
server. Verify
Client and
License server
versions match.

VLS_BAD_SERVER_
MESSAGE is returned
when the client or
server is unable to
decrypt or understand
the message send or
received. In case of
commuter license error
88
(VLS_TERMINAL_SERVE
R_FOUND) is returned
when one trys to check
out a license on
terminal server
machine.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
404 Sentinel LM Programmer’s Reference Manual

26 026 VLS_CLK_TAMP_FOUND Request denied
due to clock
tamper
detection.

The license server has
found evidence of
tampering of the
system clock, and it
cannot service the
request since the
license for this feature
has been set to be
time-tamper proof.

27 027 VLS_NOT_AUTHORIZED Unauthorized
operation
requested.

The specified operation
is not permitted -
authorization failed.

28 028 VLS_INVALID_DOMAIN Cannot perform
this operation
on the domain
name specified.

The domain of license
server is different from
that of client.

29 VLS_UNKNOWN_TAG_
TYPE

Tag type is not
known to server.

The server does not
know of this tag type.

30 VLS_INVALID_TAG_
TYPE

Tag type is
incompatible
with requested
operation.

The tag type is invalid
for the operation
requested.

31 VLS_UNKNOWN_TAG Supplied tag is
not known to
the license
server on host

The server doesn't
know this tag.

32 VLS_UPDATE_TAGGED_
KEY_ERROR

Invalid attempt
to update a
tagged key.

Failure to update a
tagged key.

33 VLS_TAGS_NOT_
SUPPORTED

License server on
host does not
support tags.

Server does not
support tags.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
Sentinel LM Programmer’s Reference Manual 405

Appendix C – Sentinel LM Error and Result Codes
34 034 VLS_LOG_FILE_NAME_
NOT_ FOUND

The specified log
filename can not
be found on
license server.

Log file name not
recognized by license
server.

35 035 VLS_LOG_FILE_NAME_
NOT_CHANGED

Cannot change
specified log
filename on
license server.

Log file name was not
changed.

36 036 VLS_FINGERPRINT_
MISMATCH

Machine’s
fingerprint
mismatched.

The fingerprint
identification of
requesting computer
does not match with
the system.

37 037 VLS_TRIAL_LIC_
EXHAUSTED

Duration or
usage of a trial
license is
exhausted.

Trial license usage
exhausted or trial
license has expired.

38 038 VLS_NO_UPDATES_SO_
FAR

The updates for
the specified
feature have not
been made so
far.

No updates have been
made so far.

39 039 VLS_ALL_UNITS_
RELEASED

All the keys
issued to the
feature have
been returned.

The client asked
VLSreleaseExt API to
return a specific
number of units, it
returned all the issued
units.

40 040 VLS_QUEUED_HANDLE The specified
handle is a
queued handle.

The LS_HANDLE is a
queued handle.

41 VLS_ACTIVE_HANDLE lshandle is active
handle.

lshandle is active
handle.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
406 Sentinel LM Programmer’s Reference Manual

42 042 VLS_AMBIGUOUS_
HANDLE

The status of the
handle is
ambiguous.

The status of
LS_HANDLE is
ambiguous. It is not
exclusively active or
exclusively queued.

43 043 VLS_NOMORE_QUEUE_
 RESOURCES

Could not locate
enough
resources to
queue for
license feature.

Could not queue the
client because the
queue is full.

44 044 VLS_NO_SUCH_CLIENT Could not find
the specified
client for the
feature.

The client specified is
not found on the
license server.

45 045 VLS_CLIENT_NOT_
AUTHORIZED

Client is not
authorized for
the specified
action.

Client not authorized
to make the specified
request.

46 VLS_BAD_DISTB_CRIT Distribution
criteria given is
not correct

Invalid distribution
criteria.

47 VLS_LEADER_NOT_
PRESENT

Current leader is
not known.

Unknown leader.

48 VLS_SERVER_ALREADY_
PRESENT

Server already
exists in the
server pool.

Attempted to add a
license server that is
already in the pool.

49 VLS_SERVER_NOT_
PRESENT

The given server
name does not
exist in the
server pool.

Attempted to delete a
license server that is
not in the pool.

50 VLS_FILE_OPEN_ERROR File open error. File can not be open.

51 VLS_BAD_HOSTNAME Bad Host Name. hostName is not valid.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
Sentinel LM Programmer’s Reference Manual 407

Appendix C – Sentinel LM Error and Result Codes
52 VLS_DIFF_LIB_VER Could not
understand the
message
received from
license server on
host. Client-
server version
mismatch?

Version mismatch
between license server
API and client API.

53 VLS_NON_REDUNDANT_
SRVR

A non-
redundant
server contacted
for redundant
server related
information.

License server is non-
redundant and
therefore cannot
support this
redundancy-related
operation.

54 VLS_MSG_TO_LEADER Message
forwarded to
the leader
server.

The message has been
forwarded to the
leader; this is not an
error.

55 VLS_CONTACT_
FAILOVER_SERVER

Update Failure.
Contact another
fail-over server.

An update failed. The
contact server may
have died or been
modified.

56 VLS_UNRESOLVED_IP_
ADDRESS

IP address given
cannot be
resolved.

IP_address is valid, but
could not be resolved.

57 VLS_UNRESOLVED_
HOSTNAME

Hostname given
is unresolved.

IP_address is valid, but
could not be resolved.

58 VLS_INVALID_IP_
ADDRESS

Invalid IP
address format.

IP_address is not valid.

59 VLS_SERVER_FILE_SYNC Server is
synchronizing
the distribution
table.

The license server is
synchronizing the
distribution table—this
is not an error.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
408 Sentinel LM Programmer’s Reference Manual

60 VLS_POOL_FULL The server pool
already has the
maximum
number of
servers.No more
servers can be
added.

Pool already has
maximum number of
license servers. No
more license servers
can be added.

61 VLS_ONLY_SERVER The server pool
has only one
server. It cannot
be deleted.

Pool will not exist if
this license server is
removed.

62 VLS_FEATURE_
INACTIVE

The feature is
unavailable on
the server or
server is non-
redundant.

Feature is inactive on
specified license server.

63 VLS_MAJORITY_RULE_
FAILURE

The token for
feature cannot
be issued
because of
majority rule
failure.

Majority rule failure
prevents token from
being issued.

64 VLS_CONF_FILE_ERROR Configuration
file
modifications
failed. Check the
given
parameters.

Error in configuration
file.

65 VLS_NON_REDUNDANT_
FEATURE

A non-
redundant
feature given
for redundant
feature related
operation.

Feature is non-
redundant and thus
cannot be used in this
redundancy-related
operation.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
Sentinel LM Programmer’s Reference Manual 409

Appendix C – Sentinel LM Error and Result Codes
66 VLS_NO_TRIAL_INFO No Trial usage
info.

No Trial usage info.

67 VLS_TRIAL_INFO_
FAILED

Trial usage query
failed.

Trial usage query
failed.

68 VLS_ELM_LIC_NOT_
ENABLE

Elan License of
feature is
Inactive.

Elan license is not
enabled.

69 VLS_NOT_LINKED_TO_
INTEGRATED_LIBRARY

Application is
not linked with
integrated
library

Requested operation
requires linking to the
integrated library not
the shared library (DLL
or SO).

70 VLS_CLIENT_COMMUTE
R_CODE_DOES_NOT
_EXIST

Client commuter
license does not
exist.

The client commuter
authorization does not
exist.

71 VLS_CLIENT_ALREADY_
EXISTS

Client already
exists on server.

The client already
exists.

72 VLS_NO_MORE_
COMMUTER_CODE

This is not really
an error code.

There are no features
to return from the
VLSgetCommuterInfo
call; this is not an error.

73 VLS_GET_COMMUTER_
INFO_FAILED

Failed to get
client commuter
info on server

Failed to get commuter
information.

74 VLS_UNABLE_TO_
UNINSTALL_CLIENT_
COMMUTER_CODE

Unable to
uninstall the
client commuter
license.

This error message is
returned when the SLM
server fails to remove
the installed commuter.
VLSuninstallAndReturn
CommuterCode failed.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
410 Sentinel LM Programmer’s Reference Manual

75 VLS_ISSUE_COMMUTER
_CODE_FAILED

Unable to issue a
commuter
license to client.

This error message is
returned when:
• Either the SLM

server fails to issue
the commuter code
to the client i.e. the
server fails to issue
the requested com-
muter code to cli-
ent.

• The client fails to
install the normal
commuter code on
the requested client
machine.

76 VLS_UNABLE_TO_ISSUE_
COMMUTER_CODE

Unable to issue a
commuter
license to client.

The license server is not
allowed to issue
commuter
authorization for the
requested feature and
version. This error
code is returned when
the commuter request
(check-in/check-out)
has been made.b

77 VLS_NOT_ENOUGH_
COMMUTER_KEYS_
AVAILABLE

Not enough
commuter
tokens available
on server.

Not enough keys
available to check out
more commuter
authorizations.

78 VLS_INVALID_INFO_
FROM_CLIENT

Invalid
commuter info
from Client.

Invalid lock
information provided
by the client.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
Sentinel LM Programmer’s Reference Manual 411

Appendix C – Sentinel LM Error and Result Codes
79 VLS_CLIENT_ALREADY_
EXIST

Client already
exists on server.

Server has already
checked out one
commuter
authorization for this
client.

80 VLS_COMMUTER_CODE
_DOES_NOT_EXIST

Client commuter
license does not
exist.

No commuter
authorization exists for
this feature and
version.

81 VLS_COMMUTER_CODE
_ALREADY_EXIST

Client commuter
license already
exists on.

Client has already had
commuter
authorization with this
feature and version.

82 VLS_SERVER_SYNC_IN_
PROGRESS

Server
synchronization
in progress.
Please wait.

License server
synchronization in
process.

83 VLS_REMOTE_
CHECKOUT

This commuter
license is
checked out
remotely, so it
can’t be
checked-in!

License is a remotely
checked out license.

84 VLS_UNABLE_TO_
INSTALL_COMMUTER_
CODE

Error installing
the remote
authorization
code.

The commuter
authorization could
not be installed on the
commuter’s computer.

85 VLS_UNABLE_TO_GET_
MACHINE_ID_STRING

Error getting the
locking
information for
the client.

Unable to compute the
commuter’s computer
fingerprint.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
412 Sentinel LM Programmer’s Reference Manual

86 VLS_INVALID_
MACHINEID_STR

Invalid remote
locking code
string.

The requested machine
ID string (fingerprint)
could not be calculated
from the remote
computer’s locking
criteria passed to the
call.

87 VLS_EXCEEDS_LICENSE
_LIFE

Cannot issue
commuter code.
License
expiration is less
than the
requested days
for commuter
code.

Commuter
authorization
expiration is greater
than the license
expiration itself.

88 VLS_TERMINAL_SERVER
_FOUND

Standalone
application
cannot run on
terminal server.

A terminal server was
found, you cannot run
stand-alone licenses on
it.

89 VLS_NOT_APPROPRIATE
_LIBRARY

Application is
not linked to
either
integrated or
standalone
library.

Application is not
linked to either the
integrated library or
the stand-alone library.

90 VLS_INVALID_FILETYPE Invalid file type. The filetype specified is
invalid.

91 VLS_NOT_SUPPORTED Application is
communicating
with an old
server.

Application is
communicating with
an old server that does
not support this
feature.

92 VLS_INVALID_LICENSE License string is
invalid

License string is invalid

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
Sentinel LM Programmer’s Reference Manual 413

Appendix C – Sentinel LM Error and Result Codes
93 VLS_DUPLICATE_
LICENSE

License string is
duplicate

License string is
duplicate

94 VLS_INSUFFICIENT_
USER_CAPACITY

Insufficient user
capacity

License server does not
currently have
sufficient user capacity
available for this team
member.

95 VLS_TEAM_LIMIT_
EXHAUSTED

Team limit
exhausted

Team limit exhausted

96 VLS_INSUFFICIENT_
TEAM_CAPACITY

Insufficient team
capacity

License server does not
currently have
sufficient team capacity
available.

LSAPI Client Function Return Codes (Continued)

Sentinel
LM Error
Number

Shell
Error
No.

Return Code Default
Message

Description
414 Sentinel LM Programmer’s Reference Manual

Appendix D
Error and Result Codes for
License Generation
Functions

The following table lists Sentinel LM license code generation return codes
and their default messages:

Sentinel LM License Code Generation Return Codes

Error
No

Return Code Default Message Description

0 VLScg_SUCCESS Success Success

2 VLScg_NO_FEATURE_
NAME

Feature Name must be
specified. It cannot be
empty.

If feature_name is NULL.

3 VLScg_INVALID_INT_
TYPE

Expected an integer value,
found “XXX”

If value is not numeric.

4 VLScg_EXCEEDS_MAX_
VALUE

Value entered is greater
than the maximum
supported value.

If value exceeds maximum
value.

5 VLScg_LESS_THAN_MIN_
VALUE

Value entered is less than
the minimum supported
value.

If value is less than the
minimum value.
Sentinel LM Programmer’s Reference Manual 415

Appendix D – Error and Result Codes for License Generation Functions
6 VLScg_EXCEEDS_MAX_
STRLEN

Length of <value> is
greater than <value>.

Length exceeds the
maximum string length.

7 VLScg_NOT_MULTIPLE Value should be a multiple
of “XXX”.

If value is not a correct
multiple.

8 VLScg_INVALID_DEATH_
YEAR

Expiration date cannot be
less than “XXX”.

If year is invalid.

9 VLScg_INVALID_BIRTH_
YEAR

Start year cannot be less
than “XXX”.

If year is too early.

10 VLScg_INVALID_DATE Date is not valid. If value is not valid for the
month.

11 VLScg_INVALID_HEX_
TYPE

Wrong value entered.
(Should be hexadecimal)

If value is not in
hexadecimal format.

12 VLScg_INVALID_IP_TYPE Wrong value entered. IP
address should be
specified in dot form.

If value is not in dot
format.

13 VLScg_INVALID_YEAR Invalid year entered. If year is invalid.

14 VLScg_RESERV_STR_ERR The string is a reserved
string.

If the string is a reserved
string.

15 VLScg_INVALID_RANGE Value violates the valid
range of input.

If value is not in the range
allowed and if value is not
a valid character.

16 VLScg_INVALID_CHARS Invalid characters. If string is not valid.

17 VLScg_SHORT_STRING License string \”<value>\”
too small to parse.

License string too small to
parse.

18 VLScg_PREMATURE_TERM Premature termination of
license code. Please check.

Premature termination of
license string. Please
check.

19 VLScg_REMAP_DEFAULT Failed to remap default
strings from configuration
file for license \”<value>\”.

Failed to remap default
strings from configuration
file for license.

Sentinel LM License Code Generation Return Codes (Continued)

Error
No

Return Code Default Message Description
416 Sentinel LM Programmer’s Reference Manual

20 VLScg_DECRYPT_FAIL Decryption failed for
license code.

Decryption failed for
license code.

21 VLScg_DYNAMIC_
DECRYPT_FAILURE

Decryption failed for
dynamically added license
code.

Decryption failed for
dynamically added license
string.

22 VLScg_INVALID_
CHKSUM

Checksum validation failed
for license code. Please
verify the license code.

Checksum validation
failed for license string.

23 VLScg_FIXED_STR_ERROR Default fixed string error. Default fixed string error.

24 VLScg_SECRET_DECRYPT_
FAILURE

Decryption failed for
secrets. Verify the
configuration file for
readable licenses.

Decryption failed for
secrets.

25 VLScg_SIMPLE_ERROR Error in license code.
Please check.

Error in license string.
Please check.

26 VLScg_MALLOC_FAILURE Out of heap memory. Out of heap memory.

27 VLScg_INTERNAL_ERROR Internal error. Internal error.

28 VLScg_UNKNOWN_LOCK Unknown lock mechanism. If the locking criteria is
unknown.

29 VLScg_VALUE_LARGE Value: <value> too large Value too large

30 VLScg_INVALID_INPUT Invalid input. If either codeP or flag are
NULL.

31 VLScg_MAX_LIMIT_
CROSSED

Maximum limit crossed. No more handles left.

32 VLScg_NO_RESOURCES No resources left. If no resources are
available.

33 VLScg_BAD_HANDLE Bad file handle. Bad file handle.

34 VLScg_FAIL Operation failed. If operation failed.

Sentinel LM License Code Generation Return Codes (Continued)

Error
No

Return Code Default Message Description
Sentinel LM Programmer’s Reference Manual 417

Appendix D – Error and Result Codes for License Generation Functions
35 VLScg_INVALID_
VENDOR_CODE

Invalid Vendor Code.
Please contact your
Sentinel LM distributor.

If vendor identification is
illegal.

36 VLScg_VENDOR_
ENCRYPTION_FAIL

Vendor-customized
encryption failed.

If vendor-customized
encryption fails.

37 VLScg_INVALID_EXP_
DATE

License Expiration Date
must be greater than Start
Date.

Expiration Date must be
greater than Start Date.

38 VLScg_INVALID_EXP_
YEAR

License Expiration Year
must be greater than Start
Year.

License Expiration Year
must be greater than Start
Year.

39 VLScg_INVALID_EXP_
MONTH

License Expiration Month
must be greater than Start
Month.

License Expiration Month
must be greater than Start
Month.

40 VLScg_LICMETER_
EXCEPTION

Unknown exception in
accessing Sentinel LM
license meter(s).

Unknown value in
accessing the license
meter.

41 VLScg_LICMETER_
DECREMENT_OK

Your Sentinel LM license
meter(s) have been
decremented by <value>
units. You now have
<value> units left out of an
initial count of <value>
units.

Your Sentinel LM license
meter(s) have been
decremented.

42 VLScg_LICMETER_
ACCESS_ERROR

Error accessing Sentinel LM
license meter(s). Please
make sure the Sentinel
System Driver is properly
installed and a license
meter is attached to the
parallel port or USB port.

Error accessing the license
meter.

Sentinel LM License Code Generation Return Codes (Continued)

Error
No

Return Code Default Message Description
418 Sentinel LM Programmer’s Reference Manual

43 VLScg_LICMETER_
COUNTER_TOOLOW

Too few units (Normal
License Count=%d/ Trial
License Count= %d) left in
your Sentinel LM license
meter(s) to generate
requested license. %d
units required.

Few units left in your
Sentinel LM license
meter(s) to generate
requested license.

44 VLScg_LICMETER_
CORRUPT

Your Sentinel LM license
meter(s) are corrupted.

License meter is
corrupted.

45 VLScg_LICMETER_
VERSION_MISMATCH

Your Sentinel LM license
meter has an invalid
version.

License meter has an
invalid version.

46 VLScg_LICMETER_EMPTY All <value> units of your
Sentinel LM license
meter(s) have been used
up. License generation will
fail.

Sentinel LM license
meter(s) have been used
up.

47 VLScg_PORTSERV_
EXCEPTION

Unknown exception
(<value>) in accessing
Sentinel LM portable
server(s).

Unknown exception in
accessing Sentinel LM
license server(s) for
commuter licenses.

48 VLScg_PORTSERV_
ACCESS_ERROR

Error accessing Sentinel LM
portable server(s). Please
make sure one is attached.

Error accessing Sentinel
LM license server(s) for a
commuter license.

49 VLScg_PORTSERV_
VERSION_MISMATCH

Your Sentinel LM license
server has an invalid
version (<value>.<value>)
for commuter licenses.
Expected <value>.<value>.

Your Sentinel LM portable
server has an invalid
version.

50 VLScg_PORTSERV_
CORRUPT

Your Sentinel LM portable
server(s) are corrupted.

Your Sentinel LM license
server(s) for commuter
licensing is corrupted.

51 VLScg_EXPIRED_LICENSE Your software license has
expired.

Your software license has
expired.

Sentinel LM License Code Generation Return Codes (Continued)

Error
No

Return Code Default Message Description
Sentinel LM Programmer’s Reference Manual 419

Appendix D – Error and Result Codes for License Generation Functions
52 VLScg_INVALID_LICTYPE Invalid License Type. Invalid License Type.

53 VLScg_INVALID_
TRIALDAYS

Invalid Trial Days. Invalid Trial Days.

54 VLScg_INVALID_TRIAL_
COUNT

Invalid Trial License Count. Invalid Trial License Count.

55 VLScg_TRIALMETER_
EMPTY

All <value> units of your
Sentinel LM Trial license
meter(s) have been used
up.

All units of your Sentinel
LM Trial license meter(s)
have been used up.

56 VLScg_TRIAL_SUCCESS Your Sentinel LM Trial
license meter(s) have been
decremented by <value>
units. You now have
<value> units left.

Your Sentinel LM Trial
license meter(s) have been
decremented.

57 VLScg_NO_NETWORK_
AUTHORIZATION

Your Sentinel LM license
meter(s) have No
authorization to generate
Network Licenses.

Server does not recognize
this network.

58 VLScg_NO_ENABLE_
FEATURE

No feature is enabled. Enable feature not
specified.

59 VLScg_VI18N_INITIALIZE_F
AIL

Error in updating locale. Error in updating locale.

Sentinel LM License Code Generation Return Codes (Continued)

Error
No

Return Code Default Message Description
420 Sentinel LM Programmer’s Reference Manual

60 VLScg_INVALID_NUM_
SERVERS

Invalid number of servers. Invalid number of servers.

61 VLScg_NO_CAPACITY_
AUTHORIZATION

Your Sentinel LM license
meter(s) have no
authorization to generate
capacity licenses.

Your Sentinel LM license
meter(s) have no
authorization to generate
capacity licenses.

 62 VLScg_UPGRADE_NOT_
ALLOWED

Your Sentinel LM license
meter(s) have no
authorization to generate
upgrade licenses.

Your Sentinel LM license
meter(s) have no
authorization to generate
upgrade licenses.

70 VLScg_LICMETER_NOT_
SUPPORTED

Your Sentinel LM License
Meteris not supported.

Your Sentinel LM License
Meteris not supported.

Sentinel LM License Code Generation Return Codes (Continued)

Error
No

Return Code Default Message Description
Sentinel LM Programmer’s Reference Manual 421

Appendix D – Error and Result Codes for License Generation Functions
422 Sentinel LM Programmer’s Reference Manual

Appendix E
Error and Result Codes for
Upgrade License Functions

The following table lists upgrade license code generation return codes and
their default messages:

Upgrade License Code Generation Return Codes

Error
No

Return Code Default Message Description

0 VLScg_SUCCESS Success Success

2 VLSucg_NO_FEATURE_
NAME

Feature Name must be
specified. It cannot be
empty.

If feature_name is NULL.

3 VLSucg_INVALID_INT_
TYPE

Expected an integer value,
found “XXX”

If value is not numeric.

4 VLSucg_EXCEEDS_MAX_
VALUE

Value entered is greater
than the maximum
supported value.

If value exceeds the
maximum value.

5 VLSucg_LESS_THAN_
MIN_VALUE

Value entered is less than
the minimum supported
value.

If value is less than the
minimum value.
Sentinel LM Programmer’s Reference Manual 423

Appendix E – Error and Result Codes for Upgrade License Functions
6 VLSucg_EXCEEDS_MAX_
STRLEN

Length of <value> is
greater than <value>.

Lenght of String is greater
than maximum
supported.

7 VLSucg_NOT_MULTIPLE Value should be a multiple
of “XXX”.

If value is not a correct
multiple.

11 VLSucg_INVALID_HEX_
TYPE

Wrong value entered.
(Should be hexadecimal)

If value is not in
hexadecimal format.

14 VLSucg_RESERV_STR_
ERROR

<Value> is a reserved
string.

The specified string is a
reserved string.

16 VLSucg_INVALID_CHARS Invalid characters. Invalid characters in
feature_name.

20 VLSucg_DECRYPT_FAIL Decryption failed for
license code.

Decryption failed for
license code.

22 VLSucg_INVALID_
CHKSUM

Checksum validation failed
for license code. Please
verify the license code.

Checksum validation
failed for license string.

26 VLSucg_MALLOC_
FAILURE

Out of heap memory. If error occurs while
allocating internal
memory for ucodeT struct.

27 VLSucg_INTERNAL_
ERROR

Internal error. If any internal error occurs
while generating the
license string.

30 VLSucg_INVALID_INPUT Invalid input. If ucodeP is passed as
NULL.

31 VLSucg_MAX_LIMIT_
CROSSED

Maximum limit crossed. Library has crossed the
limit of maximum handles
it can allocate.

32 VLSucg_NO_RESOURCES No resources left. If no resources are
available.

33 VLSucg_BAD_HANDLE Bad file handle. If the handle passed is not
a valid handle.

Upgrade License Code Generation Return Codes (Continued)

Error
No

Return Code Default Message Description
424 Sentinel LM Programmer’s Reference Manual

34 VLSucg_FAIL Operation failed. On Failure

35 VLSucg_INVALID_
VENDOR_CODE

Invalid Vendor Code.
Please contact your
Sentinel LM distributor.

If vendor identification is
illegal.

36 VLSucg_VENDOR_
ENCRYPTION_FAIL

Vendor-customized
encryption failed.

If vendor-customized
encryption fails.

40 VLSucg_LICMETER_
EXCEPTION

Unknown exception in
accessing Sentinel LM
license meter(s).

If error occur while
accessing the dongle.

41 VLSucg_LICMETER_
DECREMENT_OK

Your Sentinel LM license
meter(s) have been
decremented by <value>
units. You now have
<value> units left out of an
initial count of <value>
units.

Your Sentinel LM license
meter(s) have been
decremented.

42 VLSucg_LICMETER_
ACCESS_ERROR

Error accessing Sentinel LM
license meter(s). Please
make sure the Sentinel
System Driver is properly
installed and a license
meter is attached to the
parallel port or USB port.

Error accessing the license
meter.

44 VLSucg_LICMETER_
CORRUPT

Your Sentinel LM license
meter(s) are corrupted.

License meter is
corrupted.

45 VLSucg_LICMETER_VERS
ION_MISMATCH

Your Sentinel LM license
meter has an invalid
version.

License meter has an
invalid version.

46 VLSucg_LICMETER_
EMPTY

All <value> units of your
Sentinel LM license
meter(s) have been used
up. License generation will
fail.

Sentinel LM license
meter(s) have been used
up.

Upgrade License Code Generation Return Codes (Continued)

Error
No

Return Code Default Message Description
Sentinel LM Programmer’s Reference Manual 425

Appendix E – Error and Result Codes for Upgrade License Functions
52 VLSucg_INVALID_
LICTYPE

Invalid License Type. Invalid License Type.

59 VLSucg_VI18N_
INITIALIZE_FAIL

Error in updating locale. Error in updating locale.

61 VLSucg_NO_CAPACITY_
AUTHORIZATION

Your Sentinel LM license
meter(s) have no
authorization to generate
Capacity Licenses.

If not authorized to
generate capacity licenses.

62 VLSucg_NO_UPGRADE_
AUTHORIZATION

Your Sentinel LM license
meter(s) have no
authorization to generate
Upgrade Licenses.

If not authorized to
generate upgrade
licenses.

63 VLSucg_NO_UPGRADE_
CODE

Upgrade Code must be
specified. It cannot be
empty.

If the upgrade_code is
passed as NULL or empty
string.

64 VLSucg_INVALID_BASE_
LIC_INFO

The information-feature
name, version and vendor
code, provided for base
license is incorrect.

The information-feature
name, version vendor
code provided for base
license is incorrect.

65 VLSucg_CAPACITY_UPD
_NOT_ALLOWED

Capacity upgrade is not
allowed, as the base lic is a
non-capacity license.

Capacity upgrade is not
allowed, as the base
license is a non-capacity
license.

66 VLSucg_INVALID_
UPGRADE_CODE

Invalid upgrade code. Invalid upgrade code.

67 VLSucg_LICMETER_
COUNTER_TOOLOW

Too few units (Normal
License Count=%d) left in
your Sentinel LM license
meter(s) to generate
requested license. %d
units required.

If license meter count is
less than the expected
decrement count.

69 VLSucg_LICMETER_NOT_
SUPPORTED

Your Sentinel LM License
Meteris not supported.

Your Sentinel LM License
Meteris not supported.

Upgrade License Code Generation Return Codes (Continued)

Error
No

Return Code Default Message Description
426 Sentinel LM Programmer’s Reference Manual

Sentinel LM Programmer’s Reference Manual 427

Appendix E – Error and Result Codes for Upgrade License Functions
428 Sentinel LM Programmer’s Reference Manual

Appendix F
File Formats

This appendix contains the formats for the following files:

■ License code

■ Configuration

■ Log

■ Group reservation

The license server looks for these files under the directory specified by the
environment variable, LSDEFAULTDIR. If this environment variable is not
set, it looks in the directory where the executable resides.

License Code File Format

The license code file contains the encrypted license codes that provides the
license server details of licensing agreements with software vendors. There
is one license code for each feature licensed by the license server.

All Sentinel LM utilities that read or write license codes use the following
conventions:

■ No more than one license code can be specified on one line of a file.

■ All characters in a license code must be 7-bit ASCII. This means no
double-byte characters or accented characters may be used.
Sentinel LM Programmer’s Reference Manual 429

Appendix F – File Formats
■ A single license code cannot be split across lines.

■ A license code must be terminated either by a new line or a pound
sign (#).

If a pound sign (#) is present on a line, all characters following it (until a
new line) will be treated as a comment and ignored. Comments may appear
anywhere in a license file.

Configuration File Format

A configuration file can be used for specifying alert actions as well as cus-
tomizing the “fixed” or predefined strings found in a readable license string.

The fixed strings or keywords that can be remapped are:

SHORT # code_type
LONG
ADD # additive
EXCL
NO_SHR # sharing_crit
USER_SHR
HOST_SHR
XDISP_SHR
APP_SHR
NO_HLD # holding_crit
APP_HLD
LIC_HLD
FLOAT # client_server_lock_mode
ND_LCK
DEMO
CL_ND_LCK
_KEYS # num_keys suffix
_MINS # key_holdtime, key_lifetime suffix
comment character
, # subfield delimiter1
: # subfield delimiter2

The strings above are used as the default strings to generate the readable
license codes unless they are mapped to other strings and specified in the
configuration file.
430 Sentinel LM Programmer’s Reference Manual

Configuration File Format
The format of the configuration file is as follows:

[feature_name1 feature_version1]
default_string = new_string # comments. This is a remap
statement.
. . .

[feature_name2 feature_version2]
default_string = new_string # comments. This is another
remap statement.
. . .

[feature_name feature_version] marks the beginning of a new section. All sub-
sequent remap statements apply to readable licenses with this feature and
version, until another [feature_name feature_version] section is encountered.

In the configuration file comments can be written after the pound sign/hash
mark (#) character.

To remap the comment character and the two subfield delimiters used in a
readable license, the following format must be used in the corresponding
section of the map file:

These characters are allowed to be remapped just in case you wish to use one
or more of these characters in your license code generator data (e.g., in ven-
dor info), which could interfere with parsing of the subfields of a readable
license. This remapping should be done when you run the license code gen-
erator. Perform the following steps:

Item Description

COMMENT = $ The comment character used in the readable
license string is # now changed to ‘$’.

SUBF_DELIM1 = ; The subfield delimiter used in the readable license
string is ‘;’ not ‘,’.

SUBF_DELIM2 = / The other subfield delimiter used in the readable
license # string is ‘/’ not ‘:’.
Sentinel LM Programmer’s Reference Manual 431

Appendix F – File Formats
1. Write the configuration file.

2. Make sure the license code generator finds the configuration file, and
that the appropriate feature and version section exists.

3. The license code generator will generate the remapped license string.

4. Ship the configuration file as well as the readable license to the end
user.

5. The end user should make sure that lsdecode and/or the license
server are able to read the configuration file. If either of these are not
able to read the configuration file, the license string may not be parsed
correctly.

Steps 3 and 5 apply to any remap statement, whether it is the comment
character or LONG that is being remapped.

In the configuration file the feature_name and feature_version can be specified
in the following three formats to control the range of applicability of the
section:

1. [feature_name feature_version] ==>

Subsequent remap statements apply only to feature_name and
feature_version.

For example:

[DOTS 1.0] ==> remapping for version 1.0 of DOTS.

2. [feature_name *] ==> remapping for all versions of feature_name.

For example:

[DOTS *] ==> remapping for all versions of DOTS.

3. [] or [* *] ==> remapping for all license codes in the license file.
432 Sentinel LM Programmer’s Reference Manual

Configuration File Format
If a particular feature name and version corresponds to more than one
[feature_name feature_version] section, then the section which describes the
feature most accurately is selected and the remap statements under that sec-
tion are used for remapping.

For example:

If [], [DOTS 2], and [DOTS *] are all specified in the map file, then:

■ For DOTS version 2 statements specified below [DOTS 2] will be used.

■ For DOTS version 1.0 statements specified below [DOTS *] will be
used.

■ For TUTOR version 0 statements specified below [] will be used.

[] or [] are invalid and should be written as [] (no space between the two
square brackets).

[**] is invalid and should be written as [* *] in the configuration file.

Furthermore, for statements associated with a particular feature and ver-
sion, only the statements within the applicable section will be used. If some
statements are missing from [DOTS *] but are given in [* *], the ones in [* *]
will not be used for DOTS 1.0.

An example configuration file is shown below:

[] # all features
SHORT = SH # short code
COMMENT = # # comment char remains the same
LONG = Ln
_KEYS = _keys
_MINS = _minutes
[DOTS *] # mapping for all versions of DOTS
SHORT = short
_KEYS = _number_of_keys
LONG = long_code
_MINS = _minutes
[DOTS 1] # mapping for version 1 of DOTS
SHORT = SHORT_CODE
LONG = LONG_CODE
FLOAT = FLOATING
_KEYS = _NUM_LICENSES
Sentinel LM Programmer’s Reference Manual 433

Appendix F – File Formats
SUBF_DELIM1 = ; # comma remapped to a semi-colon
[STARS 2] # stars version 2
_MINS = _MINUTES
LONG = LONG_CODE
SHORT = SHORT_CODE
_KEYS = _LICENSE
SUBF_DELIM2 = / # colon remapped to '/'
COMMENT = @ # comment delimiter

For parsing errors in readable license strings, the license server gives the line
number of the string, the file name, and the cause of error.

The environment variable, LSERVRCCNF, can specify the path to the config-
uration file. The path for <licenseFile>.cnf, is constructed from the license file
path the user is using. licenseFile can be specified using existing methods
such as the -s option, or the LSERVRC environment variable. It is not an
error for the configuration file to be missing. The configuration file can con-
tain information other than remap statements. For instance, alert
specifications are also given in this file, so it is a general-purpose configura-
tion file associated with a particular license file.

We suggest you to refer to Setinel LM System Administrator Online Guide for
more details on alert specifications.

Log File Format

The license server generates a usage file that logs all license codes issued or
denied. License code updates are not recorded. Usage reports can be gener-
ated using the Sentinel LM utility, lsusage. Reports for encrypted log files
can be generated by developers only using the vusage utility. See the Senti-
nel LM Developer’s Guide for information on lsusage and vusage.

Various levels of encryption can be set for the log file entries. You set the
encryption level for a particular license code when you generate it, and any
log file entry created for that license code will be encrypted at that level. A
developer-specified non-zero encryption level overrides any encryption level
set by a customer. See the Sentinel LM Developer’s Guide and the Sentinel LM
Administrator’s Guide for details.
434 Sentinel LM Programmer’s Reference Manual

Log File Format
License codes with an LFE level of 0 will be encrypted using the level speci-
fied in the -lfe license server switch.

Information is recorded in the log file one entry per line in the following
format:

Log Entry Format

Serve
r-LFE

Licens
e-LFE

Date Time-
stamp

Featu
re

Ver Capac
ity
Flag

Capa
city

Trans Num-
keys

Keylife User Host Team
Capa-
city

User
Capa-
city

LSver Curre-
ncy

Comm
-ent

Elements of a Log File

Element Description

Server-LFE Customer-defined log file encryption level as specified by the
license server -lfe startup option.

License-LFE Developer-defined log file encryption level as specified during
license code generation. If this is non-zero, it overrides the
Server-LFE.

Date The date the entry was made, in the format:
Day-of-week Month Day Time (hh:mm:ss) Year.

Time-stamp The time stamp of the entry, according to the format set by the
mktime C library call.

Feature Name of the feature.

Ver Version of the feature.

Capacity
Flag

To show whether the licenses is a capacity license or a non-
capacity license.
• 0-non-capacity license
• 1-non-pooled capacity license
• 2-pooled capacity license

Capacity Capacity per token for non-pooled license, capacity of license
for a pooled license and for a non-capacity license.

Trans The transaction type. 0 indicates an issue, 1 a denial, and 2 a
return.

Numkeys The number of licenses in use after the current request/release.

Keylife The time, in seconds, that the license was issued.
Sentinel LM Programmer’s Reference Manual 435

Appendix F – File Formats
A typical entry might appear as:

1 1 ODA= Mon Mar 17 14:06:12 2003 1047890172 bounce v
1 1000 0 2 0 jsmith jsmith-xp 7.3.0 1 - - - - - - 1000
200 MQ== 1695726 MTgwNzI4MA==

This entry indicates that Monday, March 17, 2003, at 14:06:12, the user,
jsmith finished using an application with the feature bounce, version 1, non
pooled capacity license and 1000 capacity per token. The license was
returned after being used on computer jsmith-xp. Because this is encrypted
to level 3, the number of license tokens remaining after the license was
returned is encrypted. The license server version is 7.3.0, and 1 license
token was used by the application. The team capacity being 1000 and the
user capacity being 200.

If the maximum size of the log file has been specified using the -z option,
Sentinel LM automatically trims the log file so that it will not grow indefi-
nitely. The trimming mechanism ensures that the log file always will have
less than 2,000 lines of ASCII text (each line requiring less than 100 bytes).

User The user name of the application associated with the entry.

Host The host name of the application associated with the entry.

LSver The version of the Sentinel LM license server.

Team
capacity

Team Capacity issued against the request.

User
capacity

User Capacity issued against the request.

Currency The number of licenses handled during the transaction.

Comment The text associated with the log_comment string passed in by
LSRequest or LSRelease.

Elements of a Log File (Continued)

Element Description
436 Sentinel LM Programmer’s Reference Manual

Index

A
adding

APIs 8
feature licensing information 110, 112
security 370–373

advanced client functions 41
APIs

adding 8
advanced 2
capacity 305
client 21–132
client example 3
commuter 293
license code generation 133
queuing 270
quick 1
redundancy 234
standard 2
upgrade license code generator 323, 351

applications
sample 18–364

authenticating the license manager 50–51

B
basic client licensing functions 24–29
basic license code generation

functions 143
broadcast intervals

retrieving 67
setting 66

C
CHALLENGE structure, defined 50
challenge-response mechanism 50–51
CHALLENGERESPONSE structure,

defined 50
changing

port number default 381–382
system time 370–373

checking out remote commuter
authorization 301

client API 21–132
example 3

client configuration functions 2, 52
client feature information, retrieving 85,

88
client libraries 22
client library

initializing 29
retrieving information 116
tracing calls 132

client query functions 2, 82
client utility functions 2, 106–119
clock, detecting changes 20, 370
code struct field setting functions 138–191
codeT 133
Sentinel LM Programmer’s Reference Manual 437

Index
commuter authorization, remote 301
commuter licensing 293, 299
configuration files

format of 430–434
conventions, manual xxi
custom host IDs, creating 382–386
customizing functions 365
customizing license file name 388
customizing Sentinel LM

changing port numbers 381–382
creating a custom host ID 382–386
detecting time tampering 370–373
license code encryption 373–377
message encryption 378–381

D
DECRYPT_LIC_OBJ Makefile variable 375
DECRYPT_MSG_OBJ Makefile variable 378
decrypting

license codes 373–377
messages 378–381

deleting
feature licensing information 114

destroying the handle for lscgen.h 144
disable auto timer 81
displaying error messages 129, 131
documentation, online xxiv
dynamic switching 13

E
ENCRYPT_LIC_OBJ Makefile variable 375
ENCRYPT_MSG_OBJ Makefile variable 378
encrypting

license codes 373–377
messages 378–381

environment variables
LS_MAX_GRP_QLEN 277
LS_MAX_HOLD_SEC 277
LS_MAX_QLEN 277
LS_MAX_WAIT_SEC 277

LSDEFAULTDIR 429
LSERVRC 434
LSERVRCCNF 434
LSFORCEHOST 10
LSHOST 16, 53

error codes
client functions 397
upgrade license generation

functions 423
error handlers 17
error handling 127–132

setting 130
error handling functions 2
error message display 131
error messages, displaying 129
errors, retrieving 145–148
event handlers, registering with the

server 368
example files 368
export information xxvii

F
feature licensing information

adding 110, 112
deleting 114
retrieving 96

feature names, retrieving 100
feature query functions 2, 90–106
feature time left information

retrieving 103
FeatureName parameter 3, 9
file formats 429–436

configuration 430–434
license codes 429
log 434–436

files
lservrc 429
lshost 54

functions
basic client 24–29
438 Sentinel LM Programmer’s Reference Manual

Index
capacity license 305
client configuration 2, 52
client query 2, 82
client utility 2, 106–119
commuter license 293
customizing 365
error handling 2
feature query 2, 90–106
license queuing 270
redundancy 234
upgrade license 323

G
get remote computer locking info 299

H
help, online xxiv
hold time

setting 69
host ID

customizing 382–386
setting 65

host names
retrieving 56
setting 53

I
initializing fields of the machineID 58
initializing the client library 29
initializing the server 367
initializing the server info 65
installing remote commuter

authorization 303

K
key time left information

retrieving 105
keys

renewing 35

L
libraries

client 22
integrated 22
network 22
stand-alone 22
UNIX 16

license code generation API 133
license codes

encrypting and decrypting 373–377
file format 429

license generation function return
codes 415

license manager
authenticating 50–52
usage logging 434–436

license server
APIs

license code generation 133
locating 107

LICENSE_LIBS macro 17
licenses

lifetime of 36
local vs. remote renewal of 75
releasing 39, 45
renewing 35
requesting 31, 42
single-call licensing

disabling 28
lifetime of a license 36
local license renewal 76
locating the license server 107
log file format 434–436
LS_LIBVERSION structure, defined 116
LS_MAX_QLEN 277
LSAPI client function return codes 397
lscgen.h handle

destroying 144
LSDEFAULTDIR environment variable 429
Sentinel LM Programmer’s Reference Manual 439

Index
lserv.h file 17
LSERVRC environment variable 434
lservrc file 429
LSFORCEHOST environment variable 10,

14
LSGetMessage 129
LSHOST environment variable 14, 16, 53
lshost file 54
LSRelease 39
LSRequest 31
LSUpdate 35
lsusage utility 434

M
machine names, retrieving 107
macros

LICENSE_LIBS 17
NO_LICENSE 6, 17

Makefile 17–18, 366
Makefile variables

DECRYPT_LIC_OBJ 375
DECRYPT_MSG_OBJ 378
ENCRYPT_LIC_OBJ 375
ENCRYPT_MSG_OBJ 378

messages, encrypting and decrypting 378–
381

N
network mode 13
NO_LICENSE macro 17
NO-NET 14

O
online documentation xxiv
online help xxiv

P
port numbers

changing the default 381–382
retrieving 58

printing errors 145–148
programs, sample 18–19
PublisherName parameter 9

Q
quick client functions 24
Quick-API 1

R
Rainbow Technologies

technical support xxv
Web site xxvi

redundant license server 233
registering an event handler 368
regulations, export xxvii
releasing licenses 39, 45
remote commuter authorization 301
remote renewal period 36
remote renewal time, setting 80
renewing license keys 35
requesting licenses 31, 42
retrieving

broadcast intervals 67
client feature information 85, 88
client library information 116
errors 145–148
feature licensing information 96
feature names 100
feature time left information 103
license time left information 105
machine names 107
server host names 56
server port numbers 58
time drift information 102
time-out intervals 68
version information 98, 101

Returns 40

S
sample applications 18–363
440 Sentinel LM Programmer’s Reference Manual

Index
sample programs 18
sample32.mak file 18
security

adding 19, 370–373, 378
Sentinel LM

APIs
capacity license 305
client 21–132
commuter license 293
license code generation 133
license queuing 267
redundancy 233
upgrade license 323

architecture 1–2
customizing

changing port numbers 381–382
creating a custom host ID 382–386
detecting time tampering 370–373
license code encryption 373–378
message encryption 378–381

security 19
adding 370–373, 378

servers
detecting 10
initializing 367
retrieving host names 56
retrieving port numbers 58
setting

host names 53
setting

broadcast intervals 66
code struct fields 138–191
error handling 130
hold time 69
host ID 65
remote renewal time 80
server names 53
time-out intervals 67

shared IDs 70, 73

shutting down lserv 117
single-call licensing

disabling 28
stand-alone mode 13
standard client functions 29
Standard-API 2
structure definitions

CHALLENGE 50
CHALLENGERESPONSE 50
LS_LIBVERSION 116
VLSclientInfo 83
VLSfeatureInfo 92

system time, detecting changes 20, 370–
373

T
time clock, detecting changes 20, 370–

373
time drift information

retrieving 102
time-out intervals

retrieving 68
setting 67

tracing client-library calls 132
tracing Sentinel LM operation 132
troubleshooting

technical support xxv

U
ucodeT Struct 325
ulcCode 352
UNIX

libraries 16
Makefile 17–18

updating 47
updating licenses 47
Upgrade License Code Generation Return

Codes 423
usage logging 434–436
using the Sentinel LM client API 21
Sentinel LM Programmer’s Reference Manual 441

Index
utilities
lsusage 434

V
variable 434
variables

environment
LSDEFAULTDIR 429
LSERVRC 434
LSFORCEHOST 10
LSHOST 16, 53

Makefile
DECRYPT_LIC_OBJ 375
DECRYPT_MSG_OBJ 378
ENCRYPT_LIC_OBJ 375
ENCRYPT_MSG_OBJ 378

version information
retrieving 98, 101

Version parameter 3, 9
VLSaddFeature 110, 236
VLSaddFeatureExt 238
VLSaddFeatureToFile 112, 239
VLSaddServerToPool 241
VLSbatchUpdate 47
VLScgAllowAdditive 159
VLScgAllowCapacity 197
VLScgAllowCapacityLic 195
VLScgAllowClientLockInfo 185
VLScgAllowClockTamperFlag 188
VLScgAllowCodegenVersion 194
VLScgAllowCommuterLicense 170
VLScgAllowFeatureName 154
VLScgAllowFeatureVersion 156
VLScgAllowHeldLic 192
VLScgAllowKeyHoldtime 215
VLScgAllowKeyHoldUnits 214
VLScgAllowKeyLifetime 161
VLScgAllowKeyLifeUnits 212
VLScgAllowKeysPerNode 205
VLScgAllowLicBirth 217

VLScgAllowLicenseType 157
VLScgAllowLicExpiration 220
VLScgAllowLockMechanism 184
VLScgAllowLockModeQuery 173
VLScgAllowLogEncryptLevel 164
VLScgAllowMajorityRuleFlag 176
VLScgAllowMultiKey 200
VLScgAllowMultipleServerInfo 178
VLScgAllowNetworkFlag 163
VLScgAllowNumKeys 171
VLScgAllowOutLicType 190
VLScgAllowRedundantFlag 175
VLScgAllowSecrets 202
VLScgAllowServerLockInfo 179
VLScgAllowSharedLic 165
VLScgAllowShareLimit 168
VLScgAllowSiteLic 207
VLScgAllowSoftLimit 211
VLScgAllowStandAloneFlag 162
VLScgAllowTeamCriteria 166
VLScgAllowTrialLicFeature 158
VLScgAllowVendorInfo 204
VLScgCleanup 144
VLScgGenerateLicense 225, 227
VLScgGetErrorLength 146
VLScgGetErrorMessage 147
VLScgGetLicenseMeterUnits 229
VLScgGetNumErrors 146
VLScgGetTrialLicenseMeterUnits 230
VLScgInitialize 143
VLScgPrintError 148
VLScgReset 145
VLScgSetAdditive 160
VLScgSetCapacityFlag 196
VLScgSetCapacityUnits 198
VLScgSetClientLockInfo 186
VLScgSetClientLockMechanism 184
VLScgSetClientServerLockMode 174
VLScgSetClockTamperFlag 188
442 Sentinel LM Programmer’s Reference Manual

Index
VLScgSetCodegenVersion 194
VLScgSetCodeLength 153
VLScgSetCommuterLicense 170
VLScgSetFeatureName 155
VLScgSetFeatureVersion 156
VLScgSetHoldingCrit 192
VLScgSetKeyHoldtime 216
VLScgSetKeyHoldtimeUnits 214
VLScgSetKeyLifetime 161
VLScgSetKeyLifetimeUnits 213
VLScgSetKeysPerNode 206
VLScgSetKeyType 200
VLScgSetLicBirthDay 218
VLScgSetLicBirthMonth 217
VLScgSetLicBirthYear 219
VLScgSetLicenseType 157
VLScgSetLicExpirationDay 222
VLScgSetLicExpirationMonth 221
VLScgSetLicExpirationYear 223
VLScgSetLicType 191
VLScgSetLoadSWLicFile 225
VLScgSetLogEncryptLevel 164
VLScgSetMajorityRuleFlag 176
VLScgSetNumClients 187
VlScgSetNumericType 224
VLScgSetNumFeatures 208–210
VLScgSetNumKeys 172
VLScgSetNumSecrets 203
VLScgSetNumServers 178
VLScgSetOutLicType 190
VLScgSetRedundantFlag 175
VLScgSetSecrets 202
VLScgSetServerLockInfo1 179
VLScgSetServerLockInfo2 183
VLScgSetServerLockMechanism1 181
VLScgSetServerLockMechanism2 182
VLScgSetSharedLicType 166
VLScgSetShareLimit 169
VLScgSetSiteLicInfo 207

VLScgSetSoftLimit 211
VLScgSetStandAloneFlag 163
VLScgSetTeamCriteria 166
VLScgSetTrialDaysCount 159
VLScgSetVendorInfo 204
VLSchangeDistbCrit 242
VLSchangePortNumber 381
VLSchangeUsageLogFileName 357
VLSCleanup 41
VLSclientInfo 83
VLScommuterInfo struct 294
VLSconfigureTimeTamper 370–371
VLSdecodeUpgradelockCode 353
VLSdecryptLicense 376
VLSdecryptMsg 380
VLSdeleteFeature 114
VLSdeleteFeatureExt 319
VLSdelServerFromPool 243
VLSdisableAutoTimer 81
VLSdisableEvents 360
VLSdisableLicense 28
VLSdiscover 11, 107
VLSdiscoverExt 246
VLSenableLocalRenewal 76
VLSencryptLicense 374
VLSencryptMsg 378
VLSerrorHandle 128
VLSeventAddHook 367–368
VLSeventSleep 361
VLSfeatureInfo 92
VLSgenerateUpgradeLockCode 350
VLSgetAndInstallCommuterCode 297
VLSgetBroadcastInterval 67
VLSgetCapacityFromHandle 321
VLSgetCapacityList 315
VLSgetClientInfo 85
VLSgetClientInfoExt 317
VLSgetCommuterCode 301
VLSgetCommuterCode call 301
Sentinel LM Programmer’s Reference Manual 443

Index
VLSgetCommuterInfo 296
VLSgetContactServer 56
VLSgetDistbCrit 249
VLSgetDistbCritToFile 251
VLSgetFeatureFromHandle 100
VLSgetFeatureInfo 96
VLSgetFeatureInfoExt 313
VLSgetFeatureInfoToFile 253
VLSgetFeatureTimeLeftFromHandle 103
VLSgetHandleInfo 88
VLSgetHandleStatus 285
VLSgetHostAddress 258
VLSgetHostName 255
VLSgetKeyTimeLeftFromHandle 105
VLSgetLeaderServerName 256
VLSgetLibInfo 116
VLSgetLicInUseFromHandle 89
VLSgetLicSharingServerList 259
VLSgetMachineID 60
VLSgetMachineIDString 299
VLSgetPoolServerList 261
VLSgetQueuedClientInfo 280
VLSgetQueuedLicense 288
VLSgetServerList 64
VLSgetServerNameFromHandle 62
VLSgetServerPort 58, 381
VLSgetTimeDriftFromHandle 102
VLSgetTimeoutInterval 68
VLSgetTrialPeriodLeft 121
VLSgetUsageLogFileName 358
VLSgetVersionFromHandle 101
VLSgetVersions 98
VLSinitialize 29
VLSinitMachineID 58
VLSinitQueuePreference 291
VLSinitServerInfo 65
VLSinitServerList 63
VLSinstallCommuterCode 303
VLSinstallCommuterCode call 303

VLSisClockSetBack 373
VLSisLocalRenewalDisabled 76
VLSlicense 24
VLSmachineIDtoLockCode 61
VLSqueuedRequest 274
VLSqueuedRequestExt 275
VLSreleaseExt 45
VLSremoveQueue 284
VLSremoveQueuedClient 282
VLSrequestExt 42
VLSscheduleEvent 359
VLSserverVendorInitialize 367
VLSsetBorrowingStatus 262
VLSsetBroadcastInterval 66
VLSsetContactServer 53
VLSsetFileName 388
VLSsetHoldTime 12, 69
VLSsetRemoteRenewalTime 80
VLSsetServerLogState 264
VLSsetServerPort 57, 381
VLSsetSharedId 70
VLSsetSharedIdValue 72
VLSsetTeamId 70
VLSsetTeamIdValue 72
VLSsetTimeoutInterval 67
VLSsetTraceLevel 17, 132
VLSsetUserErrorFile 131
VLSshutDown 117
VLSucgAllowBaseFeatureName 333
VLSucgAllowBaseFeatureVersion 335
VLSucgAllowUpgradeCapacity 343
VLSucgAllowUpgradeCode 337
VLSucgAllowUpgradeFlag 339
VLSucgAllowUpgradeVersion 341
VLSucgCleanup 327
VLSucgDecodeLicense 354
VLSucgGenerateLicense 347
VLSucgGetErrorLength 330
VLSucgGetErrorMessage 331
444 Sentinel LM Programmer’s Reference Manual

Index
VLSucgGetLicenseMeterUnits 349
VLSucgGetNumErrors 329
VLSucgInitialize 327
VLSucgPrintError 332
VLSucgReset 328
VLSucgSetBaseFeatureName 334
VLSucgSetBaseFeatureVersion 336
VLSucgSetUpgradeCapacity 346
VLSucgSetUpgradeCapacityUnits 344
VLSucgSetUpgradeCode 338
VLSucgSetUpgradeFlag 340
VLSucgSetUpgradeVersion 342
VLSuninstallAndReturnCommuterCode 2

98
VLSupdateQueuedClient 286
VLSwhere 119

W
Web site, Rainbow Technologies xxvi
Web site, Technical Support xxv
Wlscgen utility

additional security 394
Sentinel LM Programmer’s Reference Manual 445

Index
446 Sentinel LM Programmer’s Reference Manual

	Sentinel LM Programmer’s Reference Manual
	Contents
	Preface
	The Sentinel LM Manuals
	Who Should Read This Manual?

	Conventions Used in This Manual
	How to Get the Most from This Manual
	Getting Help
	Help Files
	Online Documentation
	Contacting Rainbow Technologies Technical Support

	Export Considerations
	We Welcome Your Comments

	Chapter 1 - Introduction
	Using the Sentinel LM Application Library
	Licensing on Stand-alone and Network Computers
	Client API Example
	Example

	Language Interfaces Supported
	Special Use of Win32 for Generating Tools
	Debugging Your Client Application
	Disabling Licensing

	Chapter 2 - Protecting Your Application with the Application Library
	Stand-alone Application Protection
	Network Application Protection
	Adding APIs to Your Source Code
	Application Identification
	Automatic License Server Detection
	Special Licensing Cases

	Integrated Application Protection
	Dynamic Switching Between Stand-alone and Network Licensing
	Examples of Dynamic Switching

	Linking with the Correct Library
	Windows Static Linked Libraries
	Windows Dynamic Linked Libraries and Import Libraries
	UNIX Libraries

	Testing and Debugging Your Application
	Disabling Licensing
	Library Tracing

	Sample Programs
	Sample Program Summary
	Customization Samples

	Notes on Security
	Protecting Against Time Tampering

	Chapter 3 - Sentinel LM Client API
	Basic Client Licensing Functions
	Quick Client Licensing Functions
	VLSlicense
	VLSdisableLicense

	Standard Client Licensing Functions
	VLSinitialize
	LSRequest
	LSUpdate
	LSRelease
	VLScleanup

	Advanced Client Licensing Functions
	VLSrequestExt
	VLSrequestExt2
	VLSreleaseExt
	VLSbatchUpdate
	Challenge-response Mechanism

	Client Configuration Functions
	VLSsetContactServer
	VLSgetContactServer
	VLSsetServerPort
	VLSgetServerPort
	VLSinitMachineID
	VLSgetMachineID
	VLSmachineIDtoLockCode
	VLSgetServerNameFromHandle
	VLSinitServerList
	VLSgetServerList
	VLSinitServerInfo
	VLSsetHostIdFunc
	VLSsetBroadcastInterval
	VLSgetBroadcastInterval
	VLSsetTimeoutInterval
	VLSgetTimeoutInterval
	VLSsetHoldTime
	VLSsetSharedId/ VLSsetTeamId
	VLSsetSharedIdValue/ VLSsetTeamIdValue

	Local vs. Remote Renewal of License Tokens
	VLSdisableLocalRenewal
	VLSenableLocalRenewal
	VLSisLocalRenewalDisabled
	VLSgetRenewalStatus
	VLSsetRemoteRenewalTime
	VLSdisableAutoTimer

	Client Query Functions
	VLSgetClientInfo
	VLSgetHandleInfo
	VLSgetLicInUseFromHandle

	Feature Query Functions
	VLSgetFeatureInfo
	VLSgetVersions
	VLSgetFeatureFromHandle
	VLSgetVersionFromHandle
	VLSgetTimeDriftFromHandle
	VLSgetFeatureTimeLeftFromHandle
	VLSgetKeyTimeLeftFromHandle

	Client Utility Functions
	VLSdiscover
	VLSaddFeature
	VLSaddFeatureToFile
	VLSdeleteFeature
	VLSgetLibInfo
	VLSshutDown
	VLSwhere

	Trial License Related Functions
	VLSgetTrialPeriodLeft

	Getting License Server Information
	VLSservInfo Struct
	Retrieving Information About Time Tampering - VLStimeTamperInfo Struct
	Retrieving Information About a License Server (VLSgetServInfo)
	VLSservInfo Data Structure

	Error Handling
	VLSerrorHandle
	LSGetMessage
	VLSsetErrorHandler
	VLSsetUserErrorFile

	Tracing Sentinel LM Operation

	Chapter 4 - License Code Generation API
	License Code Generation Functions
	CodeT Struct
	Basic Functions
	VLScgInitialize
	VLScgCleanup
	VLScgReset

	Functions Which Retrieve or Print Errors
	VLScgGetNumErrors
	VLScgGetErrorLength
	VLScgGetErrorMessage
	VLScgPrintError

	Functions for Setting the Fields in CodeT Struct
	VLScgSetCodeLength
	VLScgAllowFeatureName
	VLScgSetFeatureName
	VLScgAllowFeatureVersion
	VLScgSetFeatureVersion
	VLScgAllowLicenseType
	VLScgSetLicenseType
	VLScgAllowTrialLicFeature
	VLScgSetTrialDaysCount
	VLScgAllowAdditive
	VLScgSetAdditive
	VLScgAllowKeyLifetime
	VLScgSetKeyLifetime
	VLScgAllowStandAloneFlag
	VLScgAllowNetworkFlag
	VLScgSetStandAloneFlag
	VLScgAllowLogEncryptLevel
	VLScgSetLogEncryptLevel
	VLScgAllowSharedLic/ VLSAllowTeamCriteria
	VLScgSetSharedLicType/ VLScgSetTeamCriteria
	VLScgAllowShareLimit/ VLScgAllowTeamLimit
	VLScgSetShareLimit/VLScgSetTeamLimit
	VLScgAllowCommuterLicense
	VLScgSetCommuterLicense
	VLScgAllowNumKeys
	VLScgSetNumKeys
	VLScgAllowLockModeQuery
	VLScgSetClientServerLockMode
	VLScgAllowRedundantFlag
	VLScgSetRedundantFlag
	VLScgAllowMajorityRuleFlag
	VLScgSetMajorityRuleFlag
	VLScgAllowMultipleServerInfo
	VLScgSetNumServers
	VLScgAllowServerLockInfo
	VLScgSetServerLockInfo1
	VLScgSetServerLockMechanism1
	VLScgSetServerLockMechanism2
	VLScgSetServerLockInfo2
	VLScgAllowLockMechanism
	VLScgSetClientLockMechanism
	VLScgAllowClientLockInfo
	VLScgSetClientLockInfo
	VLScgSetNumClients
	VLScgAllowClockTamperFlag
	VLScgSetClockTamperFlag
	VLScgAllowOutLicType
	VLScgSetOutLicType
	VLScgSetLicType
	VLScgAllowHeldLic
	VLScgSetHoldingCrit
	VLScgAllowCodegenVersion
	VLScgSetCodegenVersion
	VLScgAllowCapacityLic
	VLScgSetCapacityFlag
	VLScgAllowCapacity
	VLScgSetCapacityUnits
	VLScgSetCapacity
	VLScgAllowMultiKey
	VLScgSetKeyType
	VLScgAllowSecrets
	VLScgSetSecrets
	VLScgSetNumSecrets
	VLScgAllowVendorInfo
	VLScgSetVendorInfo
	VLScgAllowKeysPerNode
	VLScgSetKeysPerNode
	VLScgAllowSiteLic
	VLScgSetSiteLicInfo
	VLScgSetNumSubnets
	VLScgAllowNumFeatures
	VLScgSetNumFeatures
	VLScgAllowSoftLimit
	VLScgSetSoftLimit
	VLScgAllowKeyLifeUnits
	VLScgSetKeyLifetimeUnits
	VLScgAllowKeyHoldUnits
	VLScgSetKeyHoldtimeUnits
	VLScgAllowKeyHoldtime
	VLScgSetKeyHoldtime
	VLScgAllowLicBirth
	VLScgSetLicBirthMonth
	VLScgSetLicBirthDay
	VLScgSetLicBirthYear
	VLScgAllowLicExpiration
	VLScgSetLicExpirationMonth
	VLScgSetLicExpirationDay
	VLScgSetLicExpirationYear
	VLScgSetNumericType
	VLScgSetLoadSWLicFile

	License Generation Function
	VLScgGenerateLicense

	License Decode Function
	VLScgDecodeLicense

	License Meter Related Functions
	VLScgGetLicenseMeterUnits
	VLScgGetTrialLicenseMeterUnits

	Chapter 5 - Redundancy API
	Redundancy Functions and API
	VLSaddFeature
	VLSaddFeatureExt
	VLSaddFeatureToFile
	VLSaddServerToPool
	VLSchangeDistbCrit
	VLSdelServerFromPool
	VLSdiscoverExt
	VLSgetDistbCrit
	VLSgetDistbCritToFile
	VLSgetFeatureInfoToFile
	VLSgetHostName
	VLSgetLeaderServerName
	VLSgetHostAddress
	VLSgetLicSharingServerList
	VLSgetPoolServerList
	VLSsetBorrowingStatus
	VLSsetServerLogState

	Chapter 6 - License Queuing API
	License Queuing Example Code
	License Queuing Functions
	VLSqueuePreference Struct
	VLSserverInfo Struct
	VLSgetQueuedClientInfo Struct
	VLSqueuedRequest and VLSqueuedRequestExt
	VLSgetQueuedClientInfo
	VLSremoveQueuedClient
	VLSremoveQueue
	VLSgetHandleStatus
	VLSupdateQueuedClient
	VLSgetQueuedLicense
	VLSinitQueuePreference

	Chapter 7 - Commuter License API
	Commuter License Related Functions
	VLSCommuterInfo
	VLSgetCommuterInfo
	VLSgetAndInstallCommuterCode
	VLSuninstallAndReturnCommuterCode
	Get Commuter Locking Code from Remote Computer (VLSgetMachineIDString)
	lock_selector Values

	Checking Out a Remote Authorization (VLSgetCommuterCode)
	Installing a Remote Commuter Authorization (VLSinstallCommuterCode)

	Chapter 8 - Capacity License API
	Capacity License Related Functions
	VLSrequestExt2
	VLSgetFeatureInfoExt
	VLSgetCapacityList
	VLSgetClientInfoExt
	VLSdeleteFeatureExt
	VLSgetCapacityFromHandle
	VLSsetTeamId
	VLSsetTeamIdValue

	Chapter 9 - Upgrade License API
	Upgrade License Code Generator API
	ucodeT Struct
	VLSucgInitialize
	VLSucgCleanup
	VLSucgReset
	VLSucgGetNumErrors
	VLSucgGetErrorLength
	VLSucgGetErrorMessage
	VLSucgPrintError
	VLSucgAllowBaseFeatureName
	VLSucgSetBaseFeatureName
	VLSucgAllowBaseFeatureVersion
	VLSucgSetBaseFeatureVersion
	VLSucgAllowUpgradeCode
	VLSucgSetUpgradeCode
	VLSucgAllowUpgradeFlag
	VLSucgSetUpgradeFlag
	VLSucgAllowUpgradeVersion
	VLSucgSetUpgradeVersion
	VLSucgAllowUpgradeCapacity
	VLSucgSetUpgradeCapacityUnits
	VLSucgSetUpgradeCapacity
	VLSucgGenerateLicense
	VLSucgGetLicenseMeterUnits
	VLSgenerateUpgradeLockCode

	Upgrade License Decode API
	ulcCode Struct
	VLSdecodeUpgradelockCode
	VLSucgDecodeLicense

	Chapter 10 - Usage Log Functions
	VLSchangeUsageLogFileName
	VLSgetUsageLogFileName

	Chapter 11 - Utility Functions
	VLSscheduleEvent
	VLSdisableEvents
	VLSeventSleep

	Appendix A - Sample Applications
	Appendix B - Customization Features
	Initializing the Server
	VLSserverVendorInitialize
	VLSeventAddHook

	Protecting Against Time Clock Changes
	VLSconfigureTimeTamper
	VLSisClockSetBack

	Encrypting License Codes
	VLSencryptLicense
	VLSdecryptLicense

	Encrypting Messages
	VLSencryptMsg
	VLSdecryptMsg

	Changing the Default Port Number
	VLSchangePortNumber

	Customizing the Host ID
	Creating the Custom Host ID Function
	Registering the Custom Host ID Function on the Server
	Registering the Custom Host ID Function on the Client
	Building the Server
	Creating an Updated Client ID Generator
	Using a Customized Host ID

	Customizing Upgrade Licenses
	VLSencryptUpgradeLicense
	VLSdecryptUpgradeLicense

	Setting License Server Information
	Setting Vendor Specific Information in a License Server (VLSsetServerInfo)

	Customizing Stand-alone License File Names (VLSsetFileName)
	Using a Custom Locking Code
	Step 1 - Rebuilding License Server
	Compiler Required
	Files Required
	Required Changes to Server Source Code
	Steps to Rebuilding the License Server

	Step 2 - Rebuilding echoid.exe
	Compiler Required
	Files Required for echoid.exe
	Required Changes to echoid.exe
	Steps to Rebuilding echoid.exe

	Step 3 - Modifying Client Application
	Overall Process of Using a Rebuilt License Server and Rebuilt echoid.exe

	Adding Additional Security to Licenses Generated by WlscGen

	Appendix C - Sentinel LM Error and Result Codes
	Appendix D - Error and Result Codes for License Generation Functions
	Appendix E - Error and Result Codes for Upgrade License Functions
	Appendix F - File Formats
	License Code File Format
	Configuration File Format
	Log File Format

	Index

